OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 33 — Nov. 20, 1998
  • pp: 7670–7679

Potential use of spaceborne lidar measurements to improve atmospheric temperature retrievals from passive sensors

Patrick Chazette, Gérard Mégie, and Jacques Pelon  »View Author Affiliations


Applied Optics, Vol. 37, Issue 33, pp. 7670-7679 (1998)
http://dx.doi.org/10.1364/AO.37.007670


View Full Text Article

Enhanced HTML    Acrobat PDF (336 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A preliminary study of the synergism between active and passive spaceborne remote sensing systems has been conducted on the basis of new prospects for the implementation of lidar systems on space platforms for global scale measurements. Assuming a quasi-simultaneity in the measurements performed with an active backscatter lidar and with operational meteorological packages such as the Television Infrared Operational Satellite (TIROS)-N Operational Vertical Sounder radiometers, it is shown that combining both measurements could lead to an improvement in the accuracy of the retrieved vertical temperature profile in the lower troposphere. We used a modified version of the improved initialization inversion operational algorithm, to process the TIROS-N Operational Vertical Sounder data, taking into account the lidar measurements of cloud heights to define a temperature reference. New perspectives for the coupling of lidar and passive radiometers are discussed.

© 1998 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.3640) Atmospheric and oceanic optics : Lidar
(030.5620) Coherence and statistical optics : Radiative transfer
(100.3190) Image processing : Inverse problems

History
Original Manuscript: December 1, 1997
Revised Manuscript: July 28, 1998
Published: November 20, 1998

Citation
Patrick Chazette, Gérard Mégie, and Jacques Pelon, "Potential use of spaceborne lidar measurements to improve atmospheric temperature retrievals from passive sensors," Appl. Opt. 37, 7670-7679 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-33-7670


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. M. McMillin, D. G. Gray, H. F. Drahos, M. W. Chalfant, C. S. Novak, “Improvements in the accuracy of operational satellite soundings,” J. Climat. Appl. Meteorol. 22, 1948–1955 (1983). [CrossRef]
  2. R. Beer, T. A. Glavich, “Remote sensing of the atmosphere by infrared emission spectroscopy,” in Advanced Optical Instrumentation for Remote Sensing of the Earth’s Surface from Space, G. Duchossois, F. L. Herr, R. Zander, eds., Proc. SPIE1129, 42–48 (1989). [CrossRef]
  3. M. T. Chahine, F. G. O’Callaghan, H. H. Aumann, R. W. Capps, R. D. Haskins, R. J. Pagano, R. A. Schlindler, “Atmospheric infrared sounder (AIRS)-science and measurement requirements,” NASA-TM-104977 (NASA, Washington, D.C., 1990).
  4. H. H. Aumann, C. Miller, “Atmospheric infrared sounder (AIRS) on the Earth observing system,” in Advanced and Next-Generation Satellite, H. Fujisada, M. N. Sweeting, eds., Proc. SPIE2583, 332–338 (1995). [CrossRef]
  5. F. Cayla, P. Javelle, “IASI instrument overview,” in Advanced and Next-Generation Satellites, H. Fujisada, M. N. Sweeting, eds., Proc. SPIE2583, 271–281 (1995). [CrossRef]
  6. C. Clerbaux, P. Chazette, G. Mégie, “Tropospheric concentration of infrared absorbing molecules using a nadir-looking Fourier transform spectrometer,” in Passive Infrared Remote Sensing of Clouds and the Atmosphere III, Proc. SPIE2578, 148–153 (1995). [CrossRef]
  7. H. L. Huang, W. L. Smith, H. M. Woolf, “Vertical resolution and accuracy of atmospheric infrared sounding spectrometers,” J. Appl. Meteorol. 31, 265–274 (1992). [CrossRef]
  8. J. D. Spinhirne, R. Boers, W. D. Hart, Cloud top liquid water from lidar observations of marine stratocumulus, J. Appl. Meteorol. 28, 81–90 (1989). [CrossRef]
  9. A. I. Carswell, A. Fong, S. R. Pal, I. Priluba, “Lidar-derived distributions of cloud vertical location and extent,” J. Appl. Meteorol. 34, 107–120 (1995). [CrossRef]
  10. S. R. Pal, A. I. Carswell, I. Gordon, A. Fong, “Lidar-derived cloud optical properties obtained during the ECLIPS Program,” J. Appl. Meteorol. 34, 2388–2399 (1995). [CrossRef]
  11. C. M. R. Platt, S. A. Young, A. I. Carswell, S. R. Pal, M. P. McCormick, D. M. Winker, M. DelGasta, L. Stefanutti, W. L. Eberhard, M. Hardesty, P. H. Flamant, R. Valentin, B. Forgan, G. G. Gimmestad, H. Jäger, S. S. Khmelevtsov, I. Kolev, B. Kaprieolev, D. Lu, K. Sassen, V. S. Shamanaev, O. Uchino, Y. Mizumo, U. Wandinger, C. Weitkamp, A. Ansmann, C. Wooldridge, “The experimental cloud lidar pilot study (ECLIPS) for cloud-radiation research,” Bull. Am. Meteorol. Soc. 75, 1635–1654 (1994). [CrossRef]
  12. M. Del Guasta, M. Morandi, L. Stefanutti, J. Brechet, J. Piquad, “One year of cloud lidar data from Dumont d’Urville (Antarctica). Part 1. General overview of geometrical and optical properties,” J. Geophys. Res. 98, 18575–18587 (1995). [CrossRef]
  13. J. D. Spinhirne, M. Z. Hansen, J. Simpson, “The structure and phase of cloud tops as observed by polarization lidar,” J. Appl. Meteorol. 22, 1319–1331 (1983). [CrossRef]
  14. L. Sauvage, H. Chepfer, V. Trouillet, P. H. Flamant, G. Brogniez, J. Pelon, F. Albers, “Remote sensing of cirrus radiative properties during EUCREX’94. Case study of 17 April 1994. Part 1. Observations,” Mon. Weather Rev., to be published.
  15. D. M. Winker, R. Couch, P. McCormick, “An overview of LITE: NASA’s LIDAR In-SPACE technology experiment,” Proc. IEEE 84, 164–180 (1996). [CrossRef]
  16. C. J. Reading, M. L. Reynolds, eds., “The nine candidate Earth Explorer Mission, Earth Radiation Mission,” ESA SP-1196 (3) (European Space Research and Technology Center, Noordwijk, The Netherlands, 1996).
  17. P. Chazette, G. Mégie, J. Pelon, P. H. Flamant, A. Dolfi Bouteyre, C. Loth, “Technical assistance for the provision of a data base on detection techniques for spaceborne lidar sensor,” Final Rep., ESTEC contract 7959/88/NL/PB (European Space Research and Technology Centre, Noordwijk, The Netherlands, 1990).
  18. P. Chazette, G. Mégie, J. Pelon, A. Chedin, N. Scott, P. Courtier, J. N. Thepaut, “Etude du sondage de l’atmosphère par simulation des données provenant des instrumentations active lidar et passive radiomètre embarquées sur satellite,” Final Rep. ESTEC contract 8699/89/NL/BI (European Space Research and Technology Centre, Noordwijk, The Netherlands, 1991).
  19. A. Chedin, N. A. Scott, C. Wahiche, P. Moulinier, N. Husson, P. Sitbon, “The ‘3I’ procedure applied to the retrieval of meteorological and climate parameters from NOAA-7,” Ocean Air Int. 1, 29–42 (1986).
  20. R. M. Measures, Laser Remote Sensing (Wiley, New York, 1984).
  21. J. Pelon, M. Desbois, P. H. Flamant, H. Le Treut, G. Sèze, M. Doutriaux, V. Trouillet, P. Chazette, S. Elouragini, C. Flamant, F. Lieutaud, J.-L. Raffaelli, R. Valentin, “A study of the potential contribution of a backscatter lidar to climatological studies, assessment of the contribution to the spaceborne backscatter lidar WCRP,” ESA Final Rep. ESA contract AO/12668/92/NL/CL (European Space Agency, Paris, 1996), p. 137.
  22. S. C. Ou, K. N. Liou, Y. Takano, N. X. Rao, Q. Fu, A. J. Heymsfield, L. M. Miloshevich, B. Baum, S. A. Kane, “Remote sensing of cirrus cloud optical depths and ice crystal sizes from AVHRR data: verification using FIRE II IFO measurements,” J. Atmos. Sci. 52, 4143–4158 (1995). [CrossRef]
  23. S. G. Warren, C. J. Hahn, J. London, “Simultaneous occurrence of different cloud types,” J. Climat. and Appl. Meteorol. 24, 658–667 (1985). [CrossRef]
  24. T. Bayes, “An essay toward solving a problem in the doctrine of chance, Philos. Trans. R. Soc. London 53, 370–418 (1763), reprinted in Biometrika 45, 293–315 (1958).
  25. A. Chedin, N. A. Scott, C. Wahiche, P. Moulinier, “The improved initialization inversion method: a high resolution physical method for temperature retrievals from satellites of the TIROS-N series,” J. Climat. Appl. Meteorol. 24, 128–143 (1985). [CrossRef]
  26. A. Chedin, N. A. Scott, “Initialization of the radiative transfer equation problem from a pattern recognition type approach: application to the satellites of the TIROS-N series,” in Advances in Remote Sensing Retrieval Methods: proceedings of the workshop on advances in remote sensing retrieval methods, A. Deepak, H. E. Fleming, M. T. Chahine, eds. (A. Deepak, Hampton, Va., 1985), pp. 495–515.
  27. W. L. Smith, H. M. Woolf, “The use of eigenvectors of statistical covariance matrices for interpreting satellite sounding radiometer observations,” J. Atmos. Sci. 33, 1127–1140 (1976). [CrossRef]
  28. W. L. Smith, M. C. Hayden, D. Q. Wark, L. M. McMillin, “The TIROS-N operational vertical sounder,” Bull. Am. Meteorol. Soc. 60, 1177–1187 (1979).
  29. S. C. Ou, K. N. Yiou, W. M. Gooch, Y. Takano, “Remote sensing of cirrus cloud parameters using advanced very-high-resolution radiometer 3.7- and 10.9-μm channels,” Appl. Opt. 32, 2171–2180 (1993). [CrossRef] [PubMed]
  30. C. D. Rogers, “Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation,” Rev. Geophys. Space Phys. 14, 609–624 (1976). [CrossRef]
  31. J. N. Thépaut, P. Moll, “Variational inversion of simulated TOVS radiances using the adjoint techniques,” Q. J. R. Meteorol. Soc. 116, 1425–1448 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited