OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 33 — Nov. 20, 1998
  • pp: 7680–7688

Physics-based visualization of dense natural clouds. II. Cloud-rendering algorithm

Sean G. O’Brien and David H. Tofsted  »View Author Affiliations

Applied Optics, Vol. 37, Issue 33, pp. 7680-7688 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (952 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We discuss the representation of aerosol-scattering properties, boundary information, and the use of these results in line-of-sight rendering applications for visualization of a modeled atmosphere based on a discrete ordinates three-dimensional radiative-transport method. The outputs of the radiative-transfer model provide spatial and angular distributions of limiting path radiance, given an input density distribution and external illumination conditions. We discuss the determination of the direct attenuated radiance, integrated path radiance, and background radiance for each pixel in the rendered scene. Orthographic and perspective projection approaches for displaying these results are described, and sample images are shown.

© 1998 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(010.1320) Atmospheric and oceanic optics : Atmospheric transmittance
(280.1310) Remote sensing and sensors : Atmospheric scattering
(290.1090) Scattering : Aerosol and cloud effects
(290.4020) Scattering : Mie theory

Original Manuscript: December 11, 1997
Revised Manuscript: May 20, 1998
Published: November 20, 1998

Sean G. O’Brien and David H. Tofsted, "Physics-based visualization of dense natural clouds. II. Cloud-rendering algorithm," Appl. Opt. 37, 7680-7688 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. H. Tofsted, S. G. O’Brien, “Physics-based visualization of dense natural clouds. I. Three-dimensional discrete ordinates radiative transfer,” Appl. Opt. 37, 7718–7728 (1998). [CrossRef]
  2. L. Hembree, S. Brand, W. C. Mayse, M. Cianciolo, B. Soderberg, “Incorporation of a cloud simulation into a flight mission rehearsal system: prototype demonstration,” Bull. Am. Meteorol. Soc. 78(5), 815–822 (1997). [CrossRef]
  3. N. L. Max, “Light diffusion through clouds and haze,” Comput. Vision Graph. Image Proc. 33, 280–292 (1986). [CrossRef]
  4. Y. Kuga, A. Ishimaru, H.-W. Chang, L. Tsang, “Comparisons between the small-angle approximation and the numerical solution for radiative transfer theory,” Appl. Opt. 25, 3803–3805 (1986). [CrossRef] [PubMed]
  5. A. Zardecki, W. G. Tam, “Iterative method for treating multiple scattering in fogs,” Can. J. Phys. 57, 1301–1308 (1979). [CrossRef]
  6. W. Baer, “New approach to earth surface modeling for real-time rendering perspective views,” in Image Modeling, L. A. Ray, J. R. Sullivan, eds., Proc. SPIE1904, 208–221 (1993). [CrossRef]
  7. S. A. W. Gerstl, A. Zardecki, “Coupled atmosphere/canopy model for remote sensing of plant reflectance features,” Appl. Opt. 24, 94–103 (1985). [CrossRef] [PubMed]
  8. D. S. Kimes, J. A. Kirchner, “Radiative transfer model for heterogeneous 3-D scenes,” Appl. Opt. 21, 4119–4129 (1982). [CrossRef] [PubMed]
  9. D. J. Diner, J. V. Martonchik, E. D. Danielson, C. J. Breugge, “Application of 3-D radiative transfer theory to atmospheric correction of land surface images,” in Proceedings of the IEEE Geoscience and Remote Sensing Society ’88 Symposium (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1988), pp. 1215–1218.
  10. D. H. Tofsted, S. G. O’Brien, “Characterizing the effects of natural clouds on scene simulations,” in Targets and Backgrounds: Characterization and Representation III, W. R. Watkins, D. Clements, eds., Proc. SPIE3062, 188–198 (1997). [CrossRef]
  11. S. G. O’Brien, D. H. Tofsted, “Visualization of dense cloud radiation data in modeling and simulations,” in Visualization of Temporal and Spatial Data for Defense Applications, N. L. Faust, ed., Proc. SPIE3085, 82–93 (1997).
  12. E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Rep. AFGL-TR-79-0124 (Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).
  13. D. H. Tofsted, B. T. Davis, A. E. Wetmore, J. Fitzgerrel, R. C. Shirkey, R. A. Sutherland, “EOSAEL 92 aerosol phase function data base pfndat,” Rep. ARL-TR-273-9 (Army Research Laboratory, White Sands Missile Range, N.M., 1997).
  14. A. Berk, L. S. Bernstein, D. C. Robertson, “modtran: a moderate resolution model for lowtran 7,” Rep. GL-TR-89-0122 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).
  15. M. E. Cianciolo, R. G. Rasmussen, “Cloud scene simulation modeling, the enhanced model,” Rep. PL-TR-92-2106 (Phillips Laboratory, Hanscom Air Force Base, Mass., 1992).
  16. R. D. H. Low, S. G. O’Brien, “EOSAEL 87, cloud transmission module cltran,” Rep. TR-0221-9 (Atmospheric Sciences Laboratory, White Sands Missile Range, N.M., 1987), Vol. 9.
  17. H. R. Pruppacher, J. D. Klett, Microphysics of Clouds and Precipitation (Reidel, Boston, 1980).
  18. A. M. Borovikov, I. I. Gaivoronskii, E. G. Zak, V. V. Kostarev, I. P. Mazin, V. E. Minervin, A. Khrgian, S. M. Simeter, Cloud Physics, (Fizika oblakov) Translated from the Russian by Israel Program for Scientific Translation, Jerusalem, Israel, 1963; available from the Office of Technical Services, U.S. Dept. of Commerce, Washington, D.C.
  19. A. Miller, “Mie code agaus 82,” Rep. ASL-CR-83-0100-3 (U.S. Army Atmospheric Sciences Laboratory, White Sands Missile Range, N.M., 1983).
  20. C. W. Therrien, Decision Estimation and Classification: An Introduction to Pattern Recognition and Related Topics (Wiley, New York, 1989).
  21. D. W. Hoock, “Modeling time-dependent obscuration for simulated imaging of dust and smoke clouds,” in Characterization, Propagation, and Simulation of Sources and Backgrounds, W. R. Watkins, D. Clement, eds., Proc. SPIE1486, 164–175 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited