OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 33 — Nov. 20, 1998
  • pp: 7801–7804

Diode-pumped Nd:FAP laser at 1.126 μm: a possible local oscillator for a Hg+ optical frequency standard

Flavio C. Cruz, Brenton C. Young, and James C. Bergquist  »View Author Affiliations


Applied Optics, Vol. 37, Issue 33, pp. 7801-7804 (1998)
http://dx.doi.org/10.1364/AO.37.007801


View Full Text Article

Enhanced HTML    Acrobat PDF (151 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the efficient operation of a continuous-wave, single-frequency, diode-pumped Nd:FAP laser at 1.126 μm. When frequency quadrupled, such a laser might be used as a local oscillator for an optical frequency standard based on the single-photon 2S1/22D5/2 electric quadrupole transition of a trapped and laser-cooled 199Hg+ ion. Since the frequencies of the atomic transition and the laser are harmonically related, this scheme helps to simplify the measurement of the SD clock transition frequency by a phase-coherent chain to the cesium primary frequency standard.

© 1998 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3580) Lasers and laser optics : Lasers, solid-state
(190.4160) Nonlinear optics : Multiharmonic generation
(300.6520) Spectroscopy : Spectroscopy, trapped ion

History
Original Manuscript: June 24, 1998
Published: November 20, 1998

Citation
Flavio C. Cruz, Brenton C. Young, and James C. Bergquist, "Diode-pumped Nd:FAP laser at 1.126 μm: a possible local oscillator for a Hg+ optical frequency standard," Appl. Opt. 37, 7801-7804 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-33-7801


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. G. Dehmelt, “Mono-ion oscillator as potential ultimate laser frequency standard,” IEEE Trans. Instrum. Meas. 31, 83–87 (1982). [CrossRef]
  2. E. Peik, G. Hollemann, H. Walther, “Laser cooling and quantum jumps of a single indium ion,” Phys. Rev. A 49, 402–408 (1994). [CrossRef] [PubMed]
  3. P. Taylor, M. Roberts, G. P. Barwood, P. Gill, “Combined optical–infrared single-ion frequency standard,” Opt. Lett. 23, 298–300 (1998). [CrossRef]
  4. L. Marmet, A. A. Madej, K. J. Siemsen, J. E. Bernard, B. G. Whitford, “Precision frequency measurement of the 2S1/2–2D5/2 transition of Sr+ with a 674-nm diode laser locked to an ultrastable cavity,” IEEE Trans. Intrum. Meas. 46, 169–173 (1997). [CrossRef]
  5. S. Urabe, M. Watanabe, H. Imajo, K. Hayasaka, “Laser cooling of trapped Ca+ and measurement of the 32D5/2 state lifetime,” Opt. Lett. 17, 1140–1142 (1992). [CrossRef] [PubMed]
  6. See, for example, Proceedings of the Fifth Symposium on Frequency Standards and Metrology, J. C. Bergquist, ed. (World Scientific, Singapore, 1996).
  7. D. J. Wineland, J. C. Bergquist, R. E. Drullinger, H. Hemmati, W. M. Itano, F. L. Walls, “Laser cooled, stored ion experiments at NBS and possible applications to microwave and optical frequency standards,” J. Phys. 42, C8-307–C8-313 (1981).
  8. J. J. Bollinger, J. D. Prestage, W. M. Itano, D. J. Wineland, “Laser-cooled-atomic frequency standard,” Phys. Rev. Lett. 54, 1000–1003 (1985);J. J. Bollinger, D. J. Heinzen, W. M. Itano, S. L. Gilbert, D. J. Wineland, “A 303-MHz frequency standard based on trapped Be+ ions,” IEEE Trans. Instrum. Meas. 40, 126–128 (1991). [CrossRef] [PubMed]
  9. D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, D. J. Wineland, “Laser-cooled mercury ion frequency standard,” Phys. Rev. Lett. 80, 2089–2092 (1998). [CrossRef]
  10. D. J. Wineland, J. C. Bergquist, W. M. Itano, F. Diedrich, C. S. Weimer, “Frequency standards in the optical spectrum,” in The Hydrogen Atom, G. F. Bassani, M. Inguscio, T. W. Hänsch, eds. (Springer-Verlag, Berlin, 1989), pp. 123–133. [CrossRef]
  11. J. C. Bergquist, W. M. Itano, D. J. Wineland, “Laser stabilization to a single ion,” in Frontiers in Laser Spectroscopy, T. W. Hänsch, M. Inguscio, eds. (North Holland, Amsterdam, 1994), pp. 359–376.
  12. C. Zimmermann, V. Vuletic, A. Hemmerich, T. W. Hänsch, “All solid state laser source for tunable blue and ultraviolet radiation,” Appl. Phys. Lett. 66, 2318–2320 (1995). [CrossRef]
  13. K. Matsubara, U. Tanaka, H. Imajo, K. Hayasaka, R. Ohmukai, M. Watanabe, S. Urabe, “An all-solid-state tunable 214.5-nm continuous-wave light source by using two-stage frequency doubling of a diode laser,” Appl. Phys. B 67, 1–4 (1998). [CrossRef]
  14. See, for example, G. Hollemann, E. Peik, H. Walther, “Frequency-stabilized diode-pumped Nd:YAG laser at 946 nm with harmonics at 473 and 237 nm,” Opt. Lett. 19, 192–194 (1994); K. Kondo, M. Oka, H. Wada, T. Fukui, N. Umezu, K. Tatsuki, S. Kubota, “Demonstration of long-term reliability of a 266-nm, continuous-wave, frequency-quadrupled solid-state laser using β-BaB2O4,” Opt. Lett. 23, 195–197 (1998).
  15. M. Zhu, J. L. Hall, “Frequency stabilization of tunable lasers,” in Experimental Methods in the Physical Sciences, F. B. Dunning, R. G. Hulet, eds. (Academic, San Diego, 1996), Vol. 29C, pp. 103–136, and references therein.
  16. R. C. Ohlmann, K. B. Steinbruegge, R. Mazelsky, “Spectroscopic and laser characteristics of neodymium-doped calcium fluorophosphate,” Appl. Opt. 7, 905–914 (1968). [CrossRef] [PubMed]
  17. X. X. Zhang, A. B. Villaverde, M. Bass, G. Lutts, B. H. T. Chai, “Spectroscopy and lasing performance of Nd3+ doped Ca5(PO4)3F,” in Growth, Characterization, and Applications of Laser Host and Nonlinear Crystals II, B. H. T. Chai, ed., Proc. SPIE1863, 35–38 (1993). [CrossRef]
  18. D. D. Davis, W. S. Heaps, D. Philen, M. Rodgers, T. McGee, A. Nelson, A. J. Moriarty, “Airborne laser induced fluorescence system for measuring OH and other trace gases in the parts-per-quadrillion to parts-per-trillion range,” Rev. Sci. Instrum. 50, 1505–1516 (1979);G. L. Vaghjiani, A. R. Ravishankara, “Kinetics and mechanism of OH reaction with CH3OOH,” J. Phys. Chem. 93, 1948–1959 (1989). [CrossRef] [PubMed]
  19. I. Biaggio, P. Kerkoc, L.-S. Wu, P. Günter, B. Zysset, “Refractive indices of orthorhombic KNbO3. II. Phase-matching configurations for nonlinear-optical interactions,” J. Opt. Soc. Am. B 9, 507–517 (1992). [CrossRef]
  20. T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980). [CrossRef]
  21. G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968). [CrossRef]
  22. J. C. Bergquist, R. G. Hulet, W. M. Itano, D. J. Wineland, “Observation of quantum jumps in a single atom,” Phys. Rev. Lett. 57, 1699–1702 (1986). [CrossRef] [PubMed]
  23. O. Pfister, M. Mürtz, J. S. Wells, L. Hollberg, J. T. Murray, “Division by 3 of optical frequencies by use of difference-frequency generation in noncritically phase-matched RbTiOAsO4,” Opt. Lett. 21, 1387–1389 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited