OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 33 — Nov. 20, 1998
  • pp: 7809–7820

Second-Harmonic Generation and Cascaded Second-Order Processes in a Counterpropagating Quasi-Phase-Matched Device

Gary D. Landry and Theresa A. Maldonado  »View Author Affiliations


Applied Optics, Vol. 37, Issue 33, pp. 7809-7820 (1998)
http://dx.doi.org/10.1364/AO.37.007809


View Full Text Article

Acrobat PDF (335 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Numerical solutions to the nonlinear coupled-wave equations of a counterpropagating quasi-phase-matched device are analyzed by numerical methods for both second-harmonic generation and cascaded processes. Normalized derivations for second-harmonic generation efficiency are also presented. The nonlinear phase shifts acquired in this device by cascaded second-order processes are promising in all-optical-switching applications. Specifically, a π/2 phase shift is shown to be achievable with 42 times less input intensity than the standard Type I configuration and 100% throughput. The effects of metallic mirrors are also presented. Careful use of the phase mismatch is shown to compensate for nonideal mirrors. Finally, conservation of power in this configuration is briefly investigated.

© 1998 Optical Society of America

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(230.4320) Optical devices : Nonlinear optical devices

Citation
Gary D. Landry and Theresa A. Maldonado, "Second-Harmonic Generation and Cascaded Second-Order Processes in a Counterpropagating Quasi-Phase-Matched Device," Appl. Opt. 37, 7809-7820 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-33-7809


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
  2. G. Stegeman, R. Schiek, L. Torner, W. Torruellas, Y. Baek, D. Baboiu, Z. Wang, E. Van Stryland, D. Hagan, and G. Assanto, “Cascading: a promising approach to nonlinear optical phenomena,” in Novel Optical Materials and Applications, I. C. Khoo, F. Simoni, and C. Umeton, eds. (Wiley, New York, 1997).
  3. J. M. R. Thomas and J. P. E. Taran, “Pulse distortions in mismatched second harmonic generation,” Opt. Commun. 4, 329–334 (1972).
  4. G. R. Meredith, “Second-order cascading in third-order nonlinear optical processes,” J. Chem. Phys. 77, 5863–5871 (1982).
  5. L. A. Ostrovskii, “Self-action of light in crystals,” JETP Lett. 5, 272–275 (1967).
  6. N. R. Belashenkov, S. V. Gagarskii, and M. V. Inochkin, “Nonlinear refraction of light on second-harmonic generation,” Opt. Spectrosc. 66, 806–808 (1989).
  7. R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17, 28–30 (1992).
  8. M. L. Sundheimer, C. Bosshard, E. W. Van Stryland, G. I. Stegeman, and J. D. Bierlein, “Large nonlinear phase modulation in quasi-phase-matched KTP waveguides as a result of cascaded second-order processes,” Opt. Lett. 18, 1397–1399 (1993).
  9. D. J. Hagan, Z. Wang, G. Stegeman, E. W. Van Stryland, M. Sheik-Bahae, and G. Assanto, “Phase-controlled transistor action by cascading of second-order nonlinearities in KTP,” Opt. Lett. 19, 1305–1307 (1994).
  10. G. Assanto, “Transistor action through nonlinear cascading in Type II interactions,” Opt. Lett. 20, 1595–1597 (1995).
  11. G. Assanto, Z. Wang, D. J. Hagan, and E. W. Van Stryland, “All-optical modulation via nonlinear cascading in type II second-harmonic generation,” Appl. Phys. Lett. 67, 2120–2122 (1995).
  12. L. Lefort and A. Barthelemy, “All-optical transistor action by polarisation rotation during type-II phase-matched second harmonic generation,” Electron. Lett. 31, 910–911 (1995).
  13. Z. Wang, D. J. Hagan, E. W. Van Stryland, and G. Assanto, “Phase-insensitive, single wavelength, all-optical transistor based on second order nonlinearities,” Electron. Lett. 32, 1135–1136 (1996).
  14. G. Assanto, G. Stegeman, M. Sheik-Bahae, and E. van Stryland, “All-optical switching devices based on large nonlinear phase shifts from second harmonic generation,” Appl. Phys. Lett. 62, 1323–1326 (1993).
  15. R. Schiek, “All-optical switching in the directional coupler caused by nonlinear refraction due to cascaded second-order nonlinearity,” Opt. Quantum Electron. 26, 415–431 (1994).
  16. R. Schiek, Y. Baek, G. Krijnen, G. I. Stegeman, I. Baumann, and W. Sohler, “All-optical switching in lithium niobate directional couplers with cascaded nonlinearity,” Opt. Lett. 21, 940–942 (1996).
  17. A. Laureti-Palma, S. Trillo, G. Assanto, A. D. Capobianco, and C. De Angelis, “All-optical switching via quadratic nonlinearities in a Mach–Zehnder device with soliton-like pulses,” Nonlinear Opt. Principles Mater. Phenomena Devices 16, 303–320 (1996).
  18. Y. Baek, R. Schiek, G. I. Stegeman, G. Krijnen, I. Baumann, and W. Sohler, “All-optical integrated Mach–Zehnder switching due to cascaded nonlinearities,” Appl. Phys. Lett. 68, 2055–2057 (1996).
  19. M. Picciau, G. Leo, and G. Assanto, “Versatile bistable gate based on quadratic cascading in a Bragg periodic structure,” J. Opt. Soc. Am. B 13, 661–670 (1996).
  20. M. Asobe, I. Yokohama, H. Itoh, and T. Kaino, “All-optical switching by use of cascading of phase-matched sum-frequency-generation and difference-frequency-generation processes in periodically poled LiNbO3,” Opt. Lett. 22, 274–276 (1997).
  21. M. A. Krumbugel, J. N. Sweetser, D. N. Fittinghoff, K. W. DeLong, and R. Trebino, “Ultrafast optical switching by use of fully phase-matched cascaded second-order nonlinearities in a polarization-gate geometry,” Opt. Lett. 22, 245–247 (1997).
  22. C. R. Menyuk, R. Schiek, and L. Torner, “Solitary waves due to χ(2):χ(2) cascading,” J. Opt. Soc. Am. B 11, 2434–2443 (1994).
  23. L. Torner, C. R. Menyuk, and G. I. Stegeman, “Excitation of solitons with cascaded χ(2) nonlinearities,” Opt. Lett. 19, 1615–1617 (1994).
  24. W. E. Torruellas, W. Zuo, L. Torner, and G. I. Stegeman, “Observation of mutual trapping and dragging of two-dimensional spatial solitary waves in a quadratic medium,” Opt. Lett. 20, 1949–1951 (1995).
  25. W. E. Torruellas, W. Zuo, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5036–5039 (1995).
  26. G. Cerullo, S. De Silvestri, A. Monguzzi, D. Segala, and V. Magni, “Self-starting mode locking of a cw Nd:YAG laser using cascaded second-order nonlinearities,” Opt. Lett. 20, 746–748 (1995).
  27. V. Couderc, O. Guy, E. Roisse, and A. Barthelemy, “Modelocking of CW Nd:YAG laser using nonlinear polarisation evolution in type II frequency doubling crystal,” Electron. Lett. 34, 672–673 (1998).
  28. M. Zgonik and P. Gunter, “Cascading nonlinearities in optical four-wave mixing,” J. Opt. Soc. Am. B 13, 570–576 (1996).
  29. M. Houe and P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D 28, 1747–1763 (1995).
  30. J. Pierce and D. Lowenthal, “Periodically poled materials & devices,” Lasers Optron. 16, 25–27 (1997).
  31. J. A. Armstrong, N. Bloembergen, J. Ducuino, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
  32. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
  33. G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997).
  34. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett. 21, 1336–1338 (1996).
  35. P. Vidakovic, D. J. Lovering, J. A. Levenson, J. Webjorn, and P. St. J. Russell, “Large nonlinear phase shift owing to cascaded χ(2) in quasi-phase-matched bulk LiNbO3,” Opt. Lett. 22, 277–279 (1997).
  36. T. Gase and W. Karthe, “Cascading the second-order susceptibility in poled polymers by quasi-phase matching,” in Quantum Electronics and Laser Science Conference, Vol. 10 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 78.
  37. G. D’Alessandro, P. S. J. Russell, and A. A. Wheeler, “Nonlinear dynamics of a backward quasi-phase-matched second-harmonic generator,” Phys. Rev. A 55, 3211–3218 (1997).
  38. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 2nd ed. (Springer, Berlin, 1997).
  39. J. U. Kang, Y. J. Ding, W. K. Burns, and J. S. Melinger, “Backward second-harmonic generation in periodically poled bulk LiNbO3,” Opt. Lett. 22, 862–864 (1997).
  40. X. Gu, R. Y. Korotkov, Y. J. Ding, J. U. Kang, and J. B. Khurgin, “Backward second-harmonic generation in periodically-poled lithium niobate,” J. Opt. Soc. Am. B 15, 1561–1566 (1998).
  41. G. Blau, H. Hubner, and B. Schnabel, “Second-harmonic generation using subwavelength gratings in planar waveguides,” Pure Appl. Opt. 6, L23–L28 (1997).
  42. C. Liao, P. Bundman, and G. I. Stegeman, “Second harmonic generation with surface guided waves in signal processing geometries,” J. Appl. Phys. 54, 6213–6217 (1983).
  43. R. Normandin and G. I. Stegeman, “Nondegenerate four-wave mixing in integrated optics,” Opt. Lett. 4, 58–59 (1979).
  44. W. P. Risk, S. D. Lau, and M. A. McCord, “Third-order guided-wave distributed Bragg reflectors fabricated by ion-exchange in KTiOPO4,” IEEE Photon. Technol. Lett. 6, 406–408 (1994).
  45. K. Mizuuchi and K. Yamamoto, “Generation of 340-nm light by frequency doubling of a laser diode in bulk periodically poled LiTaO3,” Opt. Lett. 21, 107–109 (1996).
  46. K. Mizuuchi, K. Yamamoto, and M. Kato, “Generation of ultraviolet light by frequency doubling of a red laser diode in a first-order periodically poled bulk LiTaO3,” Appl. Phys. Lett. 70, 1201–1203 (1997).
  47. Y. Shuto, T. Watanabe, S. Tomaru, I. Yokohama, M. Hikita, and M. Amano, “Quasi-phase-matched second-harmonic generation in diazo-dye-substituted polymer channel waveguides,” IEEE J. Quantum Electron. 33, 349–357 (1997).
  48. N. Hashizume, T. Tsuruzono, T. Kondo, and R. Ito, “Fabrication of periodic waveguides using organic crystals and fluorinated polyimides for quasi-phase-matched second-harmonic generation,” Opt. Rev. 4, 316–320 (1997).
  49. G. D. Landry and T. A. Maldonado, “Efficient nonlinear phase shifts due to cascaded second-order processes in a counterpropagating quasi-phase-matched configuration,” Opt. Lett. 22, 1400–1402 (1997).
  50. Y. J. Ding and J. B. Khurgin, “Second-harmonic generation based on quasi-phase matching: a novel configuration,” Opt. Lett. 21, 1445–1447 (1996).
  51. See, for example, R. W. Boyd, Nonlinear Optics (Academic, San Diego, 1992).
  52. D. Zwillinger, Handbook of Differential Equations, 2nd ed. (Academic, San Diego, 1992).
  53. J. M. Manley and H. E. Rowe, “General energy in nonlinear reactances,” Proc. IRE 47, 2115–2116 (1959).
  54. H. S. Nalwa, T. Watanabe, and S. Miyata, “Organic materials for second-order nonlinear optics,” in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalwa and S. Miyata, eds. (CRC, Boca Raton, Fla., 1997), pp. 166–167.
  55. R. A. Paquin, “Properties of metals,” in Handbook of Optics, Vol II: Devices, Measurements, and Properties, M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, eds. (McGraw-Hill, New York, 1995), p. 35.19.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited