OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 33 — Nov. 20, 1998
  • pp: 7865–7874

Determination of soot parameters by a two-angle scattering–extinction technique in an ethylene diffusion flame

Silvana De Iuliis, Francesco Cignoli, Sergio Benecchi, and Giorgio Zizak  »View Author Affiliations


Applied Optics, Vol. 37, Issue 33, pp. 7865-7874 (1998)
http://dx.doi.org/10.1364/AO.37.007865


View Full Text Article

Enhanced HTML    Acrobat PDF (230 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We used a two-angle scattering technique to investigate the soot distribution in an ethylene diffusion flame in conjunction with extinction measurements. In the framework of a fractal description, we introduced a modified structure factor to interpret the scattering intensity from polydisperse aggregates. The connection between a mean value of a structural radius of gyration, Rgm1 , and the quantities experimentally measured was then established. Soot parameters (volume fraction, particle size, and number densities) were determined along three radial sections of a 8-cm high-diffusion flame. The stability of the results with respect to the parameters of the distribution function was studied.

© 1998 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(280.2470) Remote sensing and sensors : Flames

History
Original Manuscript: July 28, 1998
Published: November 20, 1998

Citation
Silvana De Iuliis, Francesco Cignoli, Sergio Benecchi, and Giorgio Zizak, "Determination of soot parameters by a two-angle scattering–extinction technique in an ethylene diffusion flame," Appl. Opt. 37, 7865-7874 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-33-7865


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. T. Charalampopoulos, “Morphology and dynamics of agglomerated particulates in combustion systems using light scattering techniques,” Prog. Energy Combust. Sci. 18, 13–45 (1992). [CrossRef]
  2. S. De Iuliis, M. Barbini, S. Benecchi, F. Cignoli, G. Zizak, “Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation,” Combust. Flame 115, 253–261 (1998). [CrossRef]
  3. P. S. Greenberg, J. C. Ku, “Soot volume fraction imaging,” Appl. Opt. 36, 5514–5522 (1997). [CrossRef] [PubMed]
  4. F. Cignoli, S. Benecchi, G. Zizak, “Time-delayed detection of laser-induced incandescence for the two-dimensional visualization of soot in flames,” Appl. Opt. 33, 5778–5782 (1994). [CrossRef] [PubMed]
  5. T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995). [CrossRef] [PubMed]
  6. S. Will, S. Schraml, A. Leipertz, “Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 20, 2342–2344 (1995). [CrossRef] [PubMed]
  7. C. R. Shaddix, R. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996). [CrossRef]
  8. R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996). [CrossRef] [PubMed]
  9. R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996). [CrossRef]
  10. B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994). [CrossRef]
  11. B. Mewes, J. M. Seitzman, “Soot volume fraction and particle size measurements with laser-induced incandescence,” Appl. Opt. 36, 709–717 (1997). [CrossRef] [PubMed]
  12. S. Kumar, C. L. Tien “Effective diameter of agglomerates for radiative extinction and scattering,” Combust. Sci. Technol. 66, 199–216 (1989). [CrossRef]
  13. C. R. Shaddix, J. F. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1997). [CrossRef]
  14. R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983). [CrossRef]
  15. R. J. Santoro, T. T. Yeh, J. J. Horvath, H. G. Semerjian, “The transport and growth of soot particles in laminar diffusion flames,” Combust. Sci. Technol. 53, 89–115 (1987). [CrossRef]
  16. R. A. Dobbins, C. M. Megaridis, “Morphology of flame-generated soot as determined by thermophoretic sampling,” Langmuir 3, 254–259 (1987). [CrossRef]
  17. C. M. Megaridis, R. A. Dobbins, “Soot aerosol dynamics in a laminar ethylene diffusion flame,” in 22nd Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1988), pp. 353–362.
  18. C. M. Megaridis, R. A. Dobbins, “Morphology description of flame-generated materials,” Combust. Sci. Technol. 71, 95–109 (1990). [CrossRef]
  19. C. M. Megaridis, R. A. Dobbins, “Comparison of soot growth and oxidation in smoking and non-smoking ethylene diffusion flames,” Combust. Sci. Technol. 66, 11–16 (1989).
  20. J. Cai, N. Lu, C. M. Sorensen, “Comparison of size and morphology of soot aggregates as determined by light scattering and electron microscope analysis,” Langmuir 9, 2861–2867 (1993). [CrossRef]
  21. U. O. Koylu, G. M. Faeth, “Structure of overfire soot in buoyant turbulent diffusion flames at long resident times,” Combust. Flame 89, 140–156 (1992). [CrossRef]
  22. J. Lahaye, F. Ehrburger-Dolle, “Mechanisms of carbon black formation. Correlation with the morphology of the aggregates,” Carbon 32, 1319–1324 (1994). [CrossRef]
  23. I. Colbeck, E. J. Hardman, R. M. Harrison, “Optical and dynamical properties of fractal cluster of carbonaceous smoke,” J. Aerosol. Sci. 20, 765–774 (1989). [CrossRef]
  24. R. A. Dobbins, R. J. Santoro, H. G. Semerajian, “Analysis of light scattering from soot using optical cross sections for aggregates,” in 23rd Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1990), pp. 1525–1532.
  25. P. A. Bonczyk, R. J. Hall, “Fractal properties of soot agglomerates,” Langmuir 7, 1274–1280 (1991). [CrossRef]
  26. P. A. Bonczyk, R. J. Hall, “Measurements of the fractal dimension of soot using UV laser radiation,” Langmuir 8, 1666–1670 (1992). [CrossRef]
  27. R. A. Dobbins, C. M. Megaridis, “Absorption and scattering of light by polydisperse aggregates,” Appl. Opt. 30, 4747–4754 (1991). [CrossRef] [PubMed]
  28. S. Gangopadhyay, I. Elminyawi, C. M. Sorensen, “Optical structure factor measurements of soot particles in a premixed flame,” Appl. Opt. 30, 4859–4864 (1991). [CrossRef] [PubMed]
  29. C. M. Sorensen, J. Cai, N. Lu, “Light-scattering measurements of monomer size, monomers per aggregate and fractal dimension for soot aggregates in flames,” Appl. Opt. 31, 6547–6557 (1992). [CrossRef] [PubMed]
  30. T. T. Charalampopoulos, H. Chang, “Effects of soot agglomeration on radiative transfer,” J. Quant. Spectrosc. Radiat. Transfer 46, 125–134 (1991). [CrossRef]
  31. R. Puri, T. F. Richardson, R. J. Santoro, R. A. Dobbins, “Aerosol dynamic processes of soot aggregates in a laminar ethene diffusion flame,” Combust. Flame 92, 320–333 (1993). [CrossRef]
  32. U. O. Koylu, G. M. Faeth, “Radiative properties of flame-generated soot,” J. Heat Transfer 115, 409–417 (1993). [CrossRef]
  33. U. O. Koylu, G. M. Faeth, “Optical properties of overfire soot in buoyant turbulent diffusion flames at long residence time,” J. Heat Transfer 116, 152–159 (1994). [CrossRef]
  34. R. A. Dobbins, G. W. Mulholland, N. P. Bryner, “Comparison of the fractal smoke optics model with light extinction measurements,” Atmos. Environ. 28, 889–897 (1994). [CrossRef]
  35. C. J. Dasch, “One-dimensional tomography: a conversion of Abel, onion-peeling, and filtered back projection methods,” Appl. Opt. 31, 1146–1152 (1992). [CrossRef] [PubMed]
  36. R. D. Mountain, G. W. Mulholland, “Light scattering from simulated smoke agglomerates,” Langmuir 4, 1321–1326 (1988). [CrossRef]
  37. U. O. Koylu, C. S. McEnally, D. E. Rosner, L. D. Pfefferle, “Simultaneous measurements of soot volume fraction and particle size/microstructure in flames using a thermophoretic sampling technique,” Combust. Flame 110, 494–507 (1997). [CrossRef]
  38. U. O. Koylu, G. M. Faeth, T. L. Farias, M. G. Carvalho, “Fractal and projected structure properties of soot aggregates,” Combust. Flame 100, 621–633 (1995). [CrossRef]
  39. C. M. Sorensen, J. Cai, N. Lu, “Test of static structure factors for describing light scattering from fractal soot aggregates,” Langmuir 8, 2064–2069 (1992). [CrossRef]
  40. J. A. Pinson, T. A. Litzinger, R. J. Santoro, “New techniques for quantitative, planar soot measurements,” presented at the fall technical meeting of the Eastern States Sections, Combustion Institute, Princeton, N.J., 25–27 October 1993.
  41. H. Chang, T. T. Charalampopoulos, “Determination of the wavelength dependence of refractive indices of flame soot,” Proc. R. Soc. London Ser. A 430, 577–591 (1990). [CrossRef]
  42. R. J. Santoro, H. G. Semerjian, “Soot formation in diffusion flames: flow rate, fuels species and temperature effects,” in 20th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1984), pp. 997–1006.
  43. C. S. McEnally, U. O. Koylu, L. D. Pfefferle, D. R. Rosner, “Soot volume fraction and temperature measurements in laminar non premixed flames using thermocouples,” Combust. Flame 109, 701–720 (1997). [CrossRef]
  44. M. Tappe, B. S. Haynes, J. H. Kent, “The effect of alkali metals on a laminar ethylene diffusion flame,” Combust. Flame 92, 266–273 (1993). [CrossRef]
  45. J. Zhang, C. M. Megaridis, “Soot suppression by Ferrocene in laminar ethylene/air nonpremixed flames,” Combust. Flame 105, 528–540 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited