OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 33 — Nov. 20, 1998
  • pp: 7875–7896

Scattering of electromagnetic waves by spheroidal particles: a novel approach exploiting the T matrix computed in spheroidal coordinates

F. Michael Schulz, Knut Stamnes, and Jakob J. Stamnes  »View Author Affiliations


Applied Optics, Vol. 37, Issue 33, pp. 7875-7896 (1998)
http://dx.doi.org/10.1364/AO.37.007875


View Full Text Article

Enhanced HTML    Acrobat PDF (426 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method other than the extended-boundary-condition method (EBCM) to compute the T matrix for electromagnetic scattering is presented. The separation-of-variables method (SVM) is used to solve the electromagnetic scattering problem for a spheroidal particle and to derive its T matrix in spheroidal coordinates. A transformation is developed for transforming the T matrix in spheroidal coordinates into the corresponding T matrix in spherical coordinates. The T matrix so obtained can be used for analytical calculation of the optical properties of ensembles of randomly oriented spheroids of arbitrary shape by use of an existing method to average over orientational angles. The optical properties obtained with the SVM and the EBCM are compared for different test cases. For mildly aspherical particles the two methods yield indistinguishable results. Small differences appear for highly aspherical particles. The new approach can be used to compute optical properties for arbitrary values of the aspect ratio. To test the accuracy of the expansion coefficients of the spheroidal functions for arbitrary arguments, a new testing method based on the completeness relation of the spheroidal functions is developed.

© 1998 Optical Society of America

OCIS Codes
(290.1310) Scattering : Atmospheric scattering
(290.5850) Scattering : Scattering, particles

History
Original Manuscript: April 14, 1998
Revised Manuscript: August 17, 1998
Published: November 20, 1998

Citation
F. Michael Schulz, Knut Stamnes, and Jakob J. Stamnes, "Scattering of electromagnetic waves by spheroidal particles: a novel approach exploiting the T matrix computed in spheroidal coordinates," Appl. Opt. 37, 7875-7896 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-33-7875


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. N. Liou, Y. Takano, “Light scattering by nonspherical particles: remote sensing and climatic implications,” Atmos. Res. 31, 271–298 (1994). [CrossRef]
  2. S. Asano, M. Sato, “Light scattering by randomly oriented spheroidal particles,” Appl. Opt. 19, 962–974 (1980). [CrossRef] [PubMed]
  3. M. I. Mishchenko, “Light scattering by size–shape distributions of randomly oriented axially symmetric particles of a size comparable to a wavelength,” Appl. Opt. 32, 4652–4665 (1993). [CrossRef] [PubMed]
  4. M. I. Mishchenko, L. D. Travis, “Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight,” J. Geophys. Res. 102, 16,989–17,013 (1997).
  5. K. Muinonen, T. Nousiainen, P. Fast, K. Lumme, J. I. Peltoniemi, “Light scattering by Gaussian random particles: ray optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 55, 577–601 (1996). [CrossRef]
  6. A. Macke, J. Mueller, E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813–2825 (1996). [CrossRef]
  7. P. Yang, K. N. Liou, “Light scattering by ice crystals of complex shapes,” in Ninth Conference on Atmospheric Radiation, Long Beach, California, February 2–7, 1997 (American Meteorological Society, Boston, Mass., 1997), pp. 373–377.
  8. P. Yang, K. N. Liou, “Light scattering by hexagonal ice crystals: solutions by a ray-by-ray integration algorithm,” J. Opt. Soc. Am. A 14, 2278–2289 (1997). [CrossRef]
  9. P. Yang, K. N. Liou, W. P. Arnott, “Extinction efficiency and single-scattering albedo for laboratory and natural cirrus clouds,” J. Geophys. Res. 102, 21,825–21,835 (1997). [CrossRef]
  10. P. Yang, K. N. Liou, “Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space,” J. Opt. Soc. Am. A 13, 2072–2085 (1996). [CrossRef]
  11. P. Yang, K. N. Liou, “Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35, 6568–6584 (1996). [CrossRef] [PubMed]
  12. P. Yang, K. N. Liou, “Light scattering by hexagonal ice crystals: comparison of finite-difference time domain and geometric optics models,” J. Opt. Soc. Am. A 12, 162–176 (1995). [CrossRef]
  13. P. N. Francis, “Some aircraft observations of the scattering properties of ice crystals,” J. Atmos. Sci. 52, 1142–1154 (1995). [CrossRef]
  14. M. I. Mishchenko, W. B. Rossow, A. Macke, A. A. Lacis, “Sensitivity of cirrus cloud albedo, bidirectional reflectance and optical thickness retrieval accuracy to ice particle shape,” J. Geophys. Res. 101, 16,973–16,985 (1996). [CrossRef]
  15. M. I. Mishchenko, L. D. Travis, R. A. Kahn, R. A. West, “Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. 102, 16,831–16,847 (1997). [CrossRef]
  16. S. Asano, G. Yamamoto, “Light scattering by a spheroidal particle,” Appl. Opt. 14, 29–49 (1975). [PubMed]
  17. V. G. Farafonov, “Scattering of electromagnetic waves by a perfectly conducting spheroid,” Radio Eng. Electron. Phys. 29, 39–45 (1984).
  18. N. V. Voshchinnikov, V. G. Farafonov, “Optical properties of spheroidal particles,” Astrophys. Space Sci. 204, 19–86 (1993). [CrossRef]
  19. N. V. Voshchinnikov, “Electromagnetic scattering by homogeneous and coated spheroids: calculations using the separation of variable method,” J. Quant. Spectrosc. Radiat. Transfer 55, 627–636 (1996). [CrossRef]
  20. M. I. Mishchenko, “Light scattering by randomly oriented axially symmetric particles,” J. Opt. Soc. Am. A 8, 871–882 (1991). [CrossRef]
  21. R. A. West, M. G. Tomasko, L. R. Doose, “Optical properties of small mineral dust particles at visible-near IR wavelengths: numerical calculations and laboratory measurements,” in Eighth Conference on Atmospheric Radiation, Nashville, Tennessee, January 23–28, 1994 (American Meteorological Society, Boston, Mass., 1994), pp. 341–343.
  22. J. Stamnes, “Exact two-dimensional scattering of an arbitrary wave by perfectly reflecting elliptical cylinders, strips, and slits,” Pure Appl. Opt. 4, 841–855 (1995). [CrossRef]
  23. J. Stamnes, H. A. Eide, “Exact and approximate solutions for focusing of two-dimensional waves. I. Theory,” J. Opt. Soc. Am. A 15, 1285–1291 (1998). [CrossRef]
  24. H. A. Eide, J. Stamnes, “Exact and approximate solutions for focusing of two-dimensional waves. II. Numerical comparisons among exact, Debye, and Kirchhoff theories,” J. Opt. Soc. Am. A 15, 1292–1307 (1998). [CrossRef]
  25. H. A. Eide, J. Stamnes, “Exact and approximate solutions for focusing of two-dimensional waves. III. Numerical comparisons between exact and Rayleigh–Sommerfeld theories,” J. Opt. Soc. Am. A 15, 1308–1319 (1998). [CrossRef]
  26. R. D. M. Garcia, C. E. Siewert, “A generalized spherical harmonics solution for radiative transfer models that include polarization effects,” J. Quant. Spectrosc. Radiat. Transfer 36, 401–423 (1986). [CrossRef]
  27. J. F. de Haan, P. B. Bosma, J. W. Hovenier, “The adding method for multiple scattering calculations of polarized light,” Astron. Astrophys. 183, 371–391 (1987).
  28. F. M. Schulz, K. Stamnes, F. Weng, “VDISORT: an improved and generalized discrete ordinate radiative transfer model for polarized (vector) radiative transfer computations,” J. Quant. Spectrosc. Radiat. Transfer (to be published).
  29. P. C. Waterman, “Matrix formulation of electromagnetic scattering,” Proc. IEEE, 53, 805–812 (1965).
  30. P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825–839 (1970). [CrossRef]
  31. P. Barber, “Differential scattering of electromagnetic waves by homogeneous isotropic dielectric bodies,” Ph.D. dissertation (University of California, Los Angeles, Los Angeles, Calif., 1973).
  32. P. Barber, C. Yeh, “Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies,” Appl. Opt. 14, 2864–2872 (1975). [CrossRef] [PubMed]
  33. P. C. Waterman, “Matrix methods in potential theory and electromagnetic scattering,” J. Appl. Phys. 50, 4550–4566 (1979). [CrossRef]
  34. M. I. Mishchenko, L. D. Travis, “Light scattering by polydispersions of randomly oriented spheroids with sizes comparable to wavelengths of observation,” Appl. Opt. 33, 7206–7225 (1994). [CrossRef] [PubMed]
  35. M. I. Mishchenko, L. D. Travis, A. Macke, “Scattering of light by polydisperse, randomly oriented, finite circular cylinders,” Appl. Opt. 35, 4927–4940 (1996). [CrossRef] [PubMed]
  36. M. I. Mishchenko, L. D. Travis, D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996). [CrossRef]
  37. D. J. Wielaard, M. I. Mishchenko, A. Macke, B. E. Carlson, “Improved T-matrix computations for large, nonabsorbing and weakly absorbing nonspherical particles and comparison with geometrical-optics approximation,” Appl. Opt. 36, 4305–4313 (1997). [CrossRef] [PubMed]
  38. M. F. Iskander, A. Lakhtakia, C. H. Durney, “A new procedure for improving the solution stability and extending the frequency range of the EBCM,” IEEE Trans. Antennas Propag. AP-31, 317–324 (1983). [CrossRef]
  39. M. F. Iskander, A. Lakhtakia, “Extension of the iterative EBCM to calculate scattering by low-loss or lossless elongated dielectric objects,” Appl. Opt. 23, 948–952 (1984). [CrossRef] [PubMed]
  40. P. M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953).
  41. C.-T. Tai, Dyadic Green Functions in Electromagnetic Theory (Institute of Electrical and Electronic Engineers, Piscataway, N.J., 1993).
  42. A. J. Giarola, “Dyadic Green’s functions in the prolate spheroidal coordinate system,” in IEEE Antennas and Propagation Society International Symposium, 1995 (Institute of Electrical and Electronic Engineers, New York, 1995), Vol. 2, pp. 826–829.
  43. R. H. Hackman, “The transition matrix for acoustic and elastic wave scattering in prolate spheroidal coordinates,” J. Acoust. Soc. Am. 75, 35–45 (1984). [CrossRef]
  44. R. H. Hackman, “Development and application of the spheroidal coordinate based T matrix solution to elastic wave scattering,” Radio Sci. 29, 1035–1049 (1994). [CrossRef]
  45. L. Tsang, J. A. Kong, R. T. Shin, “Radiative transfer theory for active remote sensing of a layer of nonspherical particles,” Radio Sci. 19, 629–642 (1984). [CrossRef]
  46. C. Flammer, Spheroidal Wave Functions (Stanford U. Press, Stanford, Calif., 1957).
  47. S. Hanish, R. V. Baier, A. L. van Buren, B. J. King, Tables of Radial Spheroidal Wave Functions (Naval Research Laboratory, Washington, D.C., 1970), Vols. 1–6.
  48. J. W. Hovenier, “Multiple scattering of polarized light in planetary atmospheres,” Astron. Astrophys. 13, 7–29 (1971).
  49. J. J. Stamnes, B. Spjelkavik, “New method for computing eigenfunctions (Mathieu functions) for scattering by elliptical cylinders,” Pure Appl. Opt. 4, 251–262 (1995). [CrossRef]
  50. C. J. Bouwkamp, “On spheroidal wave functions of order zero,” J. Math. Phys. 26, 79–93 (1947).
  51. V. V. Varadan, V. K. Varadan, “Multiple scattering of electromagnetic waves by randomly distributed and oriented dielectric scatterers,” Phys. Rev. D 21, 388–394 (1980). [CrossRef]
  52. N. G. Khlebtsov, “Orientational averaging of light-scattering observables in the T-matrix approach,” Appl. Opt. 31, 5359–5365 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited