OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 33 — Nov. 20, 1998
  • pp: 7906–7911

Tunable diode laser absorption spectroscopy of carbon monoxide around 2.35 μm

Jean-Christophe Nicolas, Alexei N. Baranov, Yvan Cuminal, Yves Rouillard, and Claude Alibert  »View Author Affiliations

Applied Optics, Vol. 37, Issue 33, pp. 7906-7911 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (175 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Novel GaInSbAs/GaSb multiple-quantum-well lasers operating near room temperature have been successfully used for tunable diode laser absorption spectroscopy in the vicinity of 2.35 μm. Continuous current tuning over a more than 150-GHz frequency range has been realized. Direct absorption measurements have been carried out on the R9, R10, R11, and R12 lines of carbon monoxide. Traces of carbon monoxide at the level of 0.3 part in 106 in volume at 100 Torr could be detected by the low-frequency wavelength-modulation technique and an astigmatic multipass cell. These results show a potential use of these diode lasers in portable low-cost trace-pollutant sensors.

© 1998 Optical Society of America

OCIS Codes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(280.3420) Remote sensing and sensors : Laser sensors
(300.1030) Spectroscopy : Absorption
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6380) Spectroscopy : Spectroscopy, modulation

Original Manuscript: March 26, 1998
Published: November 20, 1998

Jean-Christophe Nicolas, Alexei N. Baranov, Yvan Cuminal, Yves Rouillard, and Claude Alibert, "Tunable diode laser absorption spectroscopy of carbon monoxide around 2.35 μm," Appl. Opt. 37, 7906-7911 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. I. Schiff, G. I. Mackay, J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed. Vol. 127 of Chemical Analysis Series (Wiley, New York, 1994), pp. 239–318.
  2. A. I. Nadezhdinskii, A. M. Prokhorov, “Modern trends in diode laser spectroscopy,” in Tunable Diode Laser Applications, A. I. Nadezhdinskii, A. M. Prokhorov, eds., Proc. SPIE1724, 2–17 (1992). [CrossRef]
  3. H. Preier, “Physics and applications of IV–VI compound semiconductor lasers,” Semicond. Sci. Technol. 5, S12–S20 (1990). [CrossRef]
  4. J. B. McManus, P. L. Kebabian, M. S. Zahniser, “Astigmatic mirror multipass absorption cells for long-path length spectroscopy,” Appl. Opt. 34, 3336–3348 (1995). [CrossRef] [PubMed]
  5. A. N. Baranov, Y. Cuminal, G. Boissier, C. Alibert, A. Joullié, “Low-threshold laser diodes based on type-II GaInAsSb/GaSb quantum-wells operating at 2.36 microns at room temperature,” Electron. Lett. 32, 2279–2280 (1996). [CrossRef]
  6. A. N. Baranov, Y. Cuminal, G. Boissier, J. C. Nicolas, J. L. Lazzari, C. Alibert, A. Joullié, “Electroluminescence of GaInSb/GaSb strained quantum well structures grown by molecular epitaxy,” Semicond. Sci. Technol. 11, 1185–1188 (1996). [CrossRef]
  7. D. C. Hovde, C. A. Parsons, “Wavelength modulation detection of water vapor using a vertical cavity emitting laser,” Appl. Opt. 36, 1135–1138 (1997). [CrossRef] [PubMed]
  8. B. Rosier, P. Gicquel, D. Henry, A. Coppalle, “Carbon monoxide concentrations and temperature measurements in a low pressure CH4–O2–NH3 flame,” Appl. Opt. 27, 360–364 (1988). [CrossRef] [PubMed]
  9. J. Reid, D. T. Cassidy, R. T. Menzies, “Linewidth measurements of tunable diode lasers using heterodyne and étalon techniques,” Appl. Opt. 21, 3961–3965 (1982). [CrossRef] [PubMed]
  10. V. G. Avetisov, A. N. Baranov, A. N. Imenkov, A. I. Nadezhdinskii, A. N. Khusnutdinov, Yu. P. Yakovlev, “Measurements of the emission linewidth of long-wavelength injection lasers based on GaInAsSb,” Sov. Tech. Phys. Lett. 16, 549–550 (1990).
  11. J. J. Olivero, R. L. Longbothum, “Empirical fits to the Voigt line width: a brief review,” J. Quant. Spectrosc. Radiat. Transfer 17, 233–236 (1977). [CrossRef]
  12. P. Werle, F. Slemr, M. Gehrtz, C. Brauchle, “Wideband noise characteristics of a lead-salt diode laser: possibility of quantum noise limited TDLAS performance,” Appl. Opt. 28, 1638–1642 (1989). [CrossRef] [PubMed]
  13. D. S. Bomse, A. C. Stanton, J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992). [CrossRef] [PubMed]
  14. R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965). [CrossRef]
  15. A. P. Larson, L. Sanström, S. Höjer, “Evaluation of distributed Bragg reflector lasers for high-sensitivity near infrared gas analysis,” Opt. Eng. 36, 117–123 (1997). [CrossRef]
  16. D. C. Hovde, A. C. Stanton, T. P. Meyers, D. R. Matt, “Methane emissions from a landfill measured by eddy correlation using a fast response diode laser sensor,” J. Atmos. Chem. 20, 141–162 (1993). [CrossRef]
  17. Mihalcea, D. S. Baer, R. K. Hanson, “Diode laser sensor for measurements of CO, CO2, and CH4 in combustion flows,” Appl. Opt. 36, 8745–8752 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited