OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 34 — Dec. 1, 1998
  • pp: 8103–8111

Mathematical model of fluorescence endoscopic image formation

Thomas D. Wang, G. Sargent Janes, Yang Wang, Irving Itzkan, Jacques Van Dam, and Michael S. Feld  »View Author Affiliations


Applied Optics, Vol. 37, Issue 34, pp. 8103-8111 (1998)
http://dx.doi.org/10.1364/AO.37.008103


View Full Text Article

Enhanced HTML    Acrobat PDF (260 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a mathematical model that describes the spatial distribution of photons in fluorescence endoscopic images, resulting in expressions for image signal-to-noise ratio and resolution. This model was applied to quantitative analysis of fluorescence images collected from human colonic mucosa with a fiber-optic and an electronic endoscope. It provides a tool for the design of fluorescence endoscopic imaging systems and for extraction of quantitative information about image features. The results apply generally to endoscopic imaging of remote structures in biological and industrial settings, in which light of weak intensity such as fluorescence as well as reflected white light is used.

© 1998 Optical Society of America

OCIS Codes
(040.3780) Detectors : Low light level
(060.2350) Fiber optics and optical communications : Fiber optics imaging
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(170.2680) Medical optics and biotechnology : Gastrointestinal
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(300.2530) Spectroscopy : Fluorescence, laser-induced

History
Original Manuscript: March 20, 1998
Revised Manuscript: August 4, 1998
Published: December 1, 1998

Citation
Thomas D. Wang, G. Sargent Janes, Yang Wang, Irving Itzkan, Jacques Van Dam, and Michael S. Feld, "Mathematical model of fluorescence endoscopic image formation," Appl. Opt. 37, 8103-8111 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-34-8103


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. J. Dobson, J. Ribeiro, “The primary aberration characteristics of thin lens models of common relay systems,” Meas. Sci. Technol. 5, 32–36 (1994). [CrossRef]
  2. R. Prescott, “Model for the assessment of image quality in endoscopes,” in Image Quality, P. S. Cheatham, ed., Proc. SPIE310, 53–57 (1981). [CrossRef]
  3. S. J. Mentzer, S. J. Swanson, M. M. Decamp, R. Bueno, D. J. Sugarbaker, “Mediastinoscopy, thoracoscopy, and video-assisted thoracic surgery in the diagnosis and staging of lung cancer,” Chest 112, 239–241 (1997). [CrossRef]
  4. M. Grasso, M. Beaghler, D. H. Bagley, S. Strup, “Actively deflectable, flexible cystoscopes—no longer solely a diagnostic instrument,” J. Endourol. 7, 527–530 (1993). [CrossRef] [PubMed]
  5. M. V. Sivak, Gastroenterologic Endoscopy (Saunders, Philadelphia, Pa., 1987), Chap. 2.
  6. M. O. Blackstone, Endoscopic Interpretation: Normal and Pathologic Appearances of the Gastrointestinal Tract (Raven, New York, 1984).
  7. N. Vakil, W. Smith, K. Bourgeois, E. C. Everbach, K. Knyrim, “Endoscopic measurement of lesion size—improved accuracy with image processing,” Gastrointest. Endosc. 40, 178–183 (1994). [CrossRef] [PubMed]
  8. L. Forkert, H. Watanabe, K. Sutherland, S. Vincent, J. T. Fisher, “Quantitative videobronchoscopy—a new technique to assess airway caliber,” Am. J. Respirat. Crit. Care Medi. 154, 1794–1803 (1996). [CrossRef]
  9. S. E. Friedl, G. Abela, T. Tomaru, G. R. Barbeau, R. A. Haley, “Quantitative endovascular angioscopy,” in Optical Fibers in Medicine IV, A. Katzir, ed., Proc. SPIE1067, 131–136 (1989).
  10. U. K. Franzeck, R. Munch, M. Wachter, B. Vesti, R. Ammann, A. Bollinger, “Dynamic fluorescence video endoscopy for intravital evaluation of gastrointestinal mucosal blood flow,” Gastrointest. Endosc. 39, 806–809 (1993). [CrossRef] [PubMed]
  11. R. Cubeddu, P. Taroni, G. Valentini, G. Canti, “Use of time-gated fluorescence imaging for diagnosis in biomedicine,” J. Photochem. Photobiol. B—Biol. 12, 109–113 (1992). [CrossRef]
  12. I. D. Campbell, R. A. Dwek, Biological Spectroscopy (Benjamin/Cummings, Menlo Park, Calif., 1984), Chap. 5.
  13. S. Andersson-Engels, J. Johansson, S. Svanberg, “Medical diagnostic system based on simultaneous multispectral fluorescence imaging,” Appl. Opt. 33, 8022–8028 (1994). [CrossRef] [PubMed]
  14. P. S. Andersson, S. Montan, S. Svanberg, “Multispectral system for medical fluorescence imaging,” IEEE J. Quantum Electron. QE-23, 1798–1805 (1987). [CrossRef]
  15. M. L. Harries, S. Lam, C. MacAulay, J. Qu, B. Palcic, “Diagnostic imaging of the larynx: autofluorescence of laryngeal tumours using the helium–cadmium laser,” J. Laryngol. Otol. 109, 108–110 (1995). [CrossRef] [PubMed]
  16. S. Lam, C. MacAulay, J. Hung, J. LeRiche, A. E. Profio, B. Palcic, “Detection of dysplasia and carcinoma in situ with a lung imaging fluorescence endoscope,” J. Thoracic Cardiovasc. Surg. 105, 1035–1040 (1993).
  17. S. Lam, J. Y. Hung, S. M. Kennedy, J. C. Leriche, S. Vedal, B. Nelems, C. E. Macaulay, B. Palcic, “Detection of dysplasia and carcinoma in situ by ratio fluorometry,” Am. Rev. Respir. Dis. 146, 1458–1461 (1992). [CrossRef] [PubMed]
  18. B. Palcic, S. Lam, J. Hung, C. MacAulay, “Detection and localization of early lung cancer by imaging techniques,” Chest 99, 742–743 (1991). [CrossRef] [PubMed]
  19. H. Kato, T. Okunaka, N. Ikeda, C. Konaka, “Application of simple imaging technique for fluorescence bronchoscopy: preliminary report,” Diagnost. Therapeut. Endosc. 1, 79–81 (1994). [CrossRef]
  20. T. D. Wang, Y. Wang, J. Van Dam, J. M. Crawford, E. A. Preisinger, M. S. Feld, “Fluorescence endoscopic imaging for detection of human colonic adenomas,” Gastroenterology 111, 1182–1191 (1996). [CrossRef] [PubMed]
  21. T. D. Wang, J. M. Crawford, Y. Wang, I. Itzkan, M. S. Feld, J. Van Dam, “Clinical use of fluorescence endoscopic images to detect colonic dysplasia,” Gastrointest. Endosc. (in press).
  22. S. Lam, B. Palcic, D. McLean, J. Hung, M. Korbelik, A. E. Profio, “Detection of early lung cancer using low dose photofrin II,” Chest 97, 333–337 (1990). [CrossRef] [PubMed]
  23. W. D. Tope, E. V. Ross, N. Kollias, A. Martin, R. Gillies, R. R. Anderson, “Protoporphyrin IX fluorescence induced by basal cell carcinoma by oral δ-aminolevulinic acid,” Photochem. Photobiol. 67, 249–255 (1998). [CrossRef] [PubMed]
  24. A. Leunig, K. Rick, H. Stepp, R. Gutmann, G. Alwin, R. Baumgartner, J. Feyh, “Fluorescence imaging and spectroscopy of 5-aminolevulinic acid induced protoporphyrin IX for the detection of neoplastic lesions in the oral cavity,” Am. J. Surg. 172, 674–677 (1996). [CrossRef] [PubMed]
  25. M. Kriegmair, R. Baumgartner, R. Knuchel, H. Stepp, F. Hofstadter, A. Hofstetter, “Detection of early bladder cancer by 5-aminolevulinic acid induced porphyrin fluorescence,” J. Urol. 155, 105–109 (1996). [CrossRef] [PubMed]
  26. P. Jichlinski, M. Forrer, J. Mizeret, T. Glanzmann, D. Braichotte, G. Wagnieres, G. Zimmer, L. Guillou, F. Schmidlin, P. Graber, P. H. van den Bergh, H. J. Leisinger, “Clinical evaluation of a method for detecting superficial surgical transitional cell carcinoma of the bladder by light-induced fluorescence of protoporphyrin IX following the topical application of 5-aminolevulinic acid: preliminary results,” Lasers Surg. Med. 20, 402–408 (1997). [CrossRef] [PubMed]
  27. J. Webber, D. Kessel, D. Fromm, “Side effects and photosensitization of human tissues after aminolevulinic acid,” J. Surg. Res. 68, 31–37 (1997). [CrossRef] [PubMed]
  28. H. Kato, Electronic Videoendoscopy (Harwood Academic, Langhorne, Pa., 1993), Chap. 1.
  29. M. Classen, K. Knyrim, H. K. Seidlitz, F. Hagenmuller, “Electronic endoscopy—the latest technology,” Endoscopy 19, 118–123 (1987). [CrossRef] [PubMed]
  30. D. Sliney, M. Wolbarsht, Safety with Laser and Other Optical Sources (Plenum, New York, 1980), Chap. 8, pp. 262–263.
  31. J. Kennedy, R. Pottier, “Endogenous protoporphyrin IX: a clinically useful photosensitizer for photodynamic therapy,” J. Photochem. Photobiol. 14, 275–292 (1992). [CrossRef]
  32. J. M. Crawford, “The gastrointestinal tract,” in Pathological Basis of Disease, S. L. Robbins, R. S. Cotran, V. Kumar, eds. (Saunders, Philadelphia, Pa., 1994), pp. 811–815.
  33. M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light, 5th ed. (Pergamon, New York, 1980), Chap. 4, p. 182.
  34. E. Hecht, Optics, 2nd ed. (Addison-Wesley, Reading, Mass., 1987), Chaps. 5, 6.
  35. Photomultiplier Tubes, Principles and Applications (Phillips Components, 100 Providence Pike, Slaterville, R.I., 1994).
  36. Oriel Corporation Catalog, (Oriel Corporation, 250 Long Beach Blvd., P.O. Box 872, Stratford, Conn., 1994).
  37. A. Macovski, Medical Imaging Systems (Prentice-Hall, Englewood Cliffs N.J., 1983), Chap. 8.
  38. I. P. Csorba, Image Tubes (Howard W. Sams, Indianapolis, Ind., 1985), Chap. 8.
  39. Olympus CF-10L Data Sheet (Olympus Corporation, 4 Nevada Dr., Lake Success, N.Y., 1996).
  40. Pentax EC-3800TL Data Sheet (Pentax Precision Instruments Corporation, 30 Ramland Rd., Orangeburg, N.Y., 1996).
  41. R. M. Cothren, M. V. Sivak, J. Van Dam, R. E. Petras, M. Fitzmaurice, J. M. Crawford, J. Wu, J. F. Brennan, R. P. Rava, R. Manoharan, M. S. Feld, “Detection of dysplasia at colonoscopy using laser-induced fluorescence: a blinded study,” Gastrointest. Endosc. 44, 168–176 (1996). [CrossRef] [PubMed]
  42. J. F. Brennan, G. I. Zonios, T. D. Wang, R. P. Rava, G. B. Hayes, R. R. Dasari, M. S. Feld, “A portable laser spectrofluorimeter system for in vivo human tissue fluorescence,” Appl. Spectrosc. 45, 2081–2088 (1993). [CrossRef]
  43. User’s Manual for ISG-204 (Xybion Electronics Systems Corporation, 8380 Miralani Dr., San Diego, Calif., 1989).
  44. Area Array Image Sensor Products (Texas Instruments, P.O. Box 655303, Dallas, Tex., 1996).
  45. T. D. Wang, “Fluorescence endoscopic imaging system for detection of colonic adenomas,” Ph.D. dissertation (Massachusetts Institute of Technology, Cambridge, Mass., 1996).
  46. J. F. Brennan, T. J. Romer, R. S. Lees, A. M. Tercyak, J. R. Kramer, M. S. Feld, “Determination of human coronary artery composition by Raman spectroscopy,” Circulation 96, 99–105 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited