OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 34 — Dec. 1, 1998
  • pp: 8112–8119

High-Speed Spectral Imager for Imaging Transient Fluorescence Phenomena

Curtis E. Volin, Bridget K. Ford, Michael R. Descour, John P. Garcia, Daniel W. Wilson, Paul D. Maker, and Gregory H. Bearman  »View Author Affiliations


Applied Optics, Vol. 37, Issue 34, pp. 8112-8119 (1998)
http://dx.doi.org/10.1364/AO.37.008112


View Full Text Article

Acrobat PDF (232 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe fluorescence spectral imaging results with the microscope computed-tomography imaging spectrometer (µCTIS). This imaging spectrometer is capable of recording spatial and spectral data simultaneously. Consequently, µCTIS can be used to image dynamic phenomena. The results presented consist of proof-of-concept imaging results with static targets composed of 6-µm fluorescing microspheres. Image data were collected with integration times of 16 ms, comparable with video-frame-rate integration times. Conversion of raw data acquired by the µCTIS to spatial and spectral data requires postprocessing. The emission spectra were sampled at 10-nm intervals between 420 and 710 nm. The smallest spatial sampling interval presented is 1.7 µm.

© 1998 Optical Society of America

OCIS Codes
(000.1430) General : Biology and medicine
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(300.6500) Spectroscopy : Spectroscopy, time-resolved

Citation
Curtis E. Volin, Bridget K. Ford, Michael R. Descour, John P. Garcia, Daniel W. Wilson, Paul D. Maker, and Gregory H. Bearman, "High-Speed Spectral Imager for Imaging Transient Fluorescence Phenomena," Appl. Opt. 37, 8112-8119 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-34-8112


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. I. Newton, “Prop. V, Theorem IV,” Opticks (Dover, New York, 1952), p. 1704.
  2. Y. Garini, N. Katzir, D. Cabib, R. A. Buckwald, D. G. Soenksen, and S. Malik, “Spectral bio-imaging,” Fluorescence Imaging Spectrometry and Microscopy, X. F. Wang and B. Herman, eds. (Wiley, New York, 1996), pp. 87–124.
  3. J. M. Mooney, V. E. Vickers, A. Myoung, and A. K. Brodzik, “High-throughput hyperspectral infrared camera,” J. Opt. Soc. Am. A 14, 2951–2961 (1997).
  4. E. S. Wachman, W. H. Niu, and D. L. Farkas, “Imaging acousto-optic tunable filter with 0.35-micrometer spatial resolution,” Appl. Opt. 35, 5220–5226 (1996).
  5. C. Hoyt, “Liquid crystal tunable filters clear the way for imaging multiprobe fluorescence,” Biophotonics International 4, 49–51 (1996).
  6. M. R. Descour, C. E. Volin, T. M. Gleeson, E. L. Dereniak, M. F. Hopkins, D. W. Wilson, and P. D. Maker, “Demonstration of a computed-tomography imaging spectrometer using a computer-generated hologram disperser,” Appl. Opt. 36, 3694–3698 (1997).
  7. X. F. Wang and B. Herman, Fluorescence Imaging Spectrometry and Microscopy (Wiley, New York, 1996).
  8. R. Y. Tsien and B. J. Bacskai, “Video-rate confocal microscopy,” Handbook of Biological Confocal Microscopy (Plenum, New York, 1995), pp. 459–478.
  9. R. Martínez-Zaguilán, M. W. Gurulé, and R. M. Lynch, “Simultaneous measurement of intracellular pH and Ca2+ in insulin-secreting cells by spectral imaging microscopy,” Am. J. Physiol. Cell Physiol. 270 C1438–C1446 (1996).
  10. G. A. Wagnières, A. P. Studzinski, D. R. Braichotte, P. Monnier, C. Despeursinge, A. Châtelain, and H. E. van den Bergh, “Clinical imaging fluorescence apparatus for the endoscopic photodetection of early cancers by use of Photofrin II,” Appl. Opt. 36, 5608–5620 (1997).
  11. R. Y. Tsien and A. Waggoner, “Fluorophores for confocal microscopy,” Handbook of Biological Confocal Microscopy (Plenum, New York, 1995) pp. 267–279.
  12. D. R. Sandison, R. M. Williams, K. S. Wells, J. Strickler, and W. W. Webb, “Quantitative fluorescence confocal laser scanning microscopy (CLSM),” Handbook of Biological Confocal Microscopy (Plenum, New York, 1995), pp. 39–53.
  13. M. R. Descour, C. E. Volin, E. L. Dereniak, K. J. Thome, A. B. Schumacher, D. W. Wilson, and P. D. Maker, “Demonstration of a high-speed nonscanning imaging spectrometer,” Opt. Lett. 22, 1271–1273 (1997).
  14. W. H. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C pp. 78–81 (Cambridge U Press, N.Y., 1992).
  15. A. Lent, “A convergent algorithm for maximum entropy image restoration,” in Image Analysis and Evaluation, SPSE Conference Proceedings, R. Shaw, ed. (Society of Photographic Scientists and Engineers, n.p.), pp. 249–257.
  16. Fluoresbrite polychromatic microspheres (6 µm), Catalog no. 19111, Polysciences Inc., 400 Valley Road, Warrington, Pa. 18976.
  17. S2000 Fiber Spectrometer, Ocean Optics, Inc., 380 Main Street, Dunedin, Fla. 34698.
  18. Optronic Laboratories, 4632 36th Street, Orlando, Fla. 32811; 1000-W Spectral Irradiance Standard, courtesy of Stuart Biggar, University of Arizona Optical Sciences Center, Remote Sensing Group (1998).
  19. Nikon, USA, 1300 Walt Whitman Road, Melville, N.Y. 11747–3064.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited