OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 36 — Dec. 20, 1998
  • pp: 8287–8296

Incorporating Higher-Order Modal Measurements in Tilt Estimation: Natural and Laser Guide Star Applications

Matthew R. Whiteley, Byron M. Welsh, and Michael C. Roggemann  »View Author Affiliations

Applied Optics, Vol. 37, Issue 36, pp. 8287-8296 (1998)

View Full Text Article

Acrobat PDF (276 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Tilt compensation performance is generally suboptimal when phase measurements from natural or laser guide stars are used as the conjugate phase in an adaptive optics system. Optimal compensation is obtained when the conjugate-phase coefficients are estimated from beacon measurements, given knowledge of the correlation between the on-axis object phase and the beacon measurements. We apply optimal compensation theory to tilt correction for the case of an off-axis beacon. Because off-axis higher-order modes are correlated with the on-axis tilt components, a performance gain can be realized when the tilt estimator includes higher-order modal measurements. For natural guide star compensation, it is shown that equivalent tilt compensation can be achieved at beacon offsets that are three times larger when higher-order modes through Zernike 15 are used in the tilt estimator. For a laser guide star, although tilt information cannot be measured directly because of beam reciprocity, off-axis higher-order modal measurements can be used to estimate tilt components, leading to a maximum Strehl ratio of approximately 0.3 for the relative aperture diameter D/r0 = 4 and the relative turbulence outer scale L0/D = 10.

© 1998 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.7350) Atmospheric and oceanic optics : Wave-front sensing

Matthew R. Whiteley, Byron M. Welsh, and Michael C. Roggemann, "Incorporating Higher-Order Modal Measurements in Tilt Estimation: Natural and Laser Guide Star Applications," Appl. Opt. 37, 8287-8296 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. Foy and A. Labeyrie, “Feasibility of adaptive telescopes with laser probe,” Astron. Astophys. 152, 129–131 (1985).
  2. L. A. Thompson and C. S. Gardner, “Experiments on laser guide stars at Mauna Kea Observatory for adaptive imaging in astronomy,” Nature (London) 328, 229–231 (1987).
  3. C. A. Primmerman, D. V. Murphy, D. A. Page, B. G. Zollars, and H. T. Barclay, “Compensation of atmospheric optical distortion using a synthetic beacon,” Nature (London) 353, 141–143 (1991).
  4. R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, and L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered light from a laser guide star,” Nature (London) 353, 144–146 (1991).
  5. C. S. Gardner, B. M. Welsh, and L. A. Thompson, “Design and performance analysis of adaptive optical telescopes using laser guide stars,” Proc. IEEE 78, 1721–1743 (1990).
  6. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976).
  7. P. H. Hu, J. Stone, and T. Stanley, “Application of Zernike polynomials to atmospheric propagation problems,” J. Opt. Soc. Am. A 6, 1595–1608 (1989).
  8. N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29, 1174–1180 (1990).
  9. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980).
  10. J. Y. Wang and J. K. Markey, “Modal compensation of atmospheric turbulence phase distortion,” J. Opt. Soc. Am. 68, 78–87 (1978).
  11. G. Dai, “Modal compensation of atmospheric turbulence with the use of Zernike polynomials and Karhunen-Loeve functions,” J. Opt. Soc. Am. A 12, 2182–2193 (1995).
  12. D. L. Fried, “Optical resolution through a randomly inhomogeneous medium for very long and very short exposures,” J. Opt. Soc. Am. 56, 1372–1379 (1966).
  13. R. J. Sasiela, Electromagnetic Wave Propagation in Turbulence (Springer-Verlag, Berlin, 1994).
  14. D. Korff, G. Dryden, and R. P. Leavitt, “Isoplanicity: the translation invariance of the atmospheric Green’s function,” J. Opt. Soc. Am. 65, 1321–1330 (1975).
  15. B. M. Welsh and C. S. Gardner, “Effects of turbulence-induced anisoplanatism on the imaging performance of adaptive-astronomical telescopes using laser guide stars,” J. Opt. Soc. Am. A 8, 69–80 (1991).
  16. D. L. Fried, “Varieties of isoplanatism,” in Imaging through the Atmosphere, J. C. Wyant, ed., Proc. SPIE 75, 20–29 (1976).
  17. G. A. Tyler, “Wave-front compensation for imaging with off-axis guide stars,” J. Opt. Soc. Am. A 11, 339–346 (1994).
  18. D. L. Fried, “Anisoplanatism in adaptive optics,” J. Opt. Soc. Am. 72, 52–61 (1982).
  19. J. Stone, P. H. Hu, S. P. Mills, and S. Ma, “Anisoplanatic effects in finite-aperture optical systems,” J. Opt. Soc. Am. A 11, 347–357 (1994).
  20. G. Molodij and G. Rousset, “Angular correlation of Zernike polynomials for a laser guide star in adaptive optics,” J. Opt. Soc. Am. A 14, 1949–1966 (1997).
  21. M. R. Whiteley, B. M. Welsh, and M. C. Roggemann, “Optimal modal wave-front compensation for anisoplanatism in adaptive optics,” J. Opt. Soc. Am. A 15, 2097–2106 (1998).
  22. S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice-Hall, Upper Saddle River, N.J., 1993).
  23. M. C. Roggemann and B. Welsh, Imaging Through Turbulence (CRC Press, Boca Raton, Fla., 1996).
  24. M. R. Whiteley, M. C. Roggemann, and B. M. Welsh, “Temporal properties of the Zernike expansion coefficients of turbulence-induced phase aberrations for aperture and source motion,” J. Opt. Soc. Am. A 15, 993–1005 (1998).
  25. J. D. H. Pilkington, “Artificial guide stars for adaptive imaging,” Nature (London) 330,116 (1987).
  26. R. Q. Fugate, “Laser beacon adaptive optics,” Opt. Photon. News 9, 14–19 (1993).
  27. M. S. Belen’kii, “Fundamental limitation in adaptive optics: how to eliminate it? A full aperture tilt measurement technique with a laser guide star,” in Adaptive Optics in Astromony, M. A. Ealey and F. Merkle, eds., Proc. SPIE 2201, 321–323 (1994).
  28. M. S. Belen’kii, “Full aperture tilt measurement technique with a laser guide star,” in Atmospheric Propagations and Remote Sensing IV, J. C. Dainty, ed., Proc. SPIE 2471, 289–300 (1995).
  29. M. S. Belen’kii, “Tilt angular correlation and tilt sensing techniques with a laser guide star,” in Optics in Atmospheric Propagation, Adaptive Systems, and Lidar Techniques for Remote Sensing, A. D. Devir, A. Kohnle, and C. Werner, eds., Proc. SPIE 2956, 206–217 (1996).
  30. M. S. Belen’kii, “Multiple aperture averaging technique for measuring full aperture tilt with a laser guide star,” in Adaptive Optics and Applications, R. K. Tyson and R. Q. Fugate, eds., Proc. SPIE 3126, 101–112 (1997).
  31. R. Ragazzoni, S. Esposito, and E. Marchetti, “Auxilary telescopes for the absolute tip-tilt determination of a laser guide star,” Mon. Not. R. Astron. Soc. 276, L76–L78 (1995).
  32. R. Ragazzoni, “Absolute tip-tilt determination with laser beacons,” Astron. Astrophys. 305, L13–L16 (1996).
  33. D. G. Sandler, S. Stahl, J. R. P. Angel, M. Lloyd-Hart, and D. McCarthy, “Adaptive optics for diffraction-limited infrared imaging with 8-m telescopes,” J. Opt. Soc. Am. A 11, 925–945 (1994).
  34. G. C. Valley and S. M. Wandzura, “Spatial correlation of phase-expansion coefficients for propagation through atmospheric turbulence,” J. Opt. Soc. Am. 69, 712–717 (1979).
  35. R. V. Hogg and A. T. Craig, Introduction to Mathematical Statistics, 5th ed. (Macmillan, New York, 1995).
  36. N. Takato and I. Yamaguchi, “Spatial correlation of Zernike phase-expansion coefficients for atmospheric turbulence with finite outer scale,” J. Opt. Soc. Am. A 12, 958–963 (1995).
  37. W. H. Press, Numerical Recipes in C: the Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992).
  38. R. Avila, A. Ziad, J. Borgnino, F. Martin, and A. Agabi, “Theoretical spatiotemporal analysis of angle of arrival induced by atmospheric turbulence as observed with a grating scale monitor experiment,” J. Opt. Soc. Am. A 14, 3070–3082 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited