OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 36 — Dec. 20, 1998
  • pp: 8297–8305

Extracting vertical winds from simulated clouds with ground-based coherent Doppler lidar

Brian T. Lottman and Rod G. Frehlich  »View Author Affiliations


Applied Optics, Vol. 37, Issue 36, pp. 8297-8305 (1998)
http://dx.doi.org/10.1364/AO.37.008297


View Full Text Article

Enhanced HTML    Acrobat PDF (243 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The performance of mean velocity estimators is determined by computer simulations for solid-state coherent Doppler lidar measurements of wind fields at a cloud interface with deterministic profiles of velocity and aerosol backscatter. Performance of the velocity estimates is characterized by the standard deviation about the estimated mean and the bias referenced to the input velocity. A new class of estimators are required for cloud conditions, as traditional techniques result in biased estimates. We consider data with high signal energy that produces negligible random outliers.

© 1998 Optical Society of America

OCIS Codes
(280.3640) Remote sensing and sensors : Lidar

History
Original Manuscript: March 9, 1998
Revised Manuscript: September 14, 1998
Published: December 20, 1998

Citation
Brian T. Lottman and Rod G. Frehlich, "Extracting vertical winds from simulated clouds with ground-based coherent Doppler lidar," Appl. Opt. 37, 8297-8305 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-36-8297


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Bilbro, C. DiMarzio, D. Fitzjarrald, S. Johnson, W. Jones, “Airborne Doppler lidar measurements,” Appl. Opt. 25, 2952–2960 (1986). [CrossRef]
  2. W. L. Eberhard, R. E. Cupp, K. R. Healy, “Doppler lidar measurements of profiles of turbulence and momentum flux,” J. Atmos. Oceanic Technol. 6, 809–819 (1989). [CrossRef]
  3. R. T. Menzies, R. M. Hardesty, “Coherent Doppler lidar for measurements of wind fields,” Proc. IEEE 77, 449–462 (1989). [CrossRef]
  4. M. J. Post, R. E. Cupp, “Optimizing a pulsed Doppler lidar,” Appl. Opt. 29, 4145–4158 (1990). [CrossRef] [PubMed]
  5. T. Gal-chen, M. Xu, W. L. Eberhard, “Estimations of atmospheric boundary layer fluxes and other turbulence parameters from Doppler lidar data,” J. Geophys. Res. 97, 409–418 (1992). [CrossRef]
  6. R. L. Schwiesow, M. P. Spowart, “The NCAR airborne infrared lidar system: status and applications,” J. Atmos. Oceanic Technol. 13, 4–15 (1996). [CrossRef]
  7. M. J. Kavaya, S. W. Henderson, J. R. Magee, C. P. Hale, R. M. Huffaker, “Remote wind profiling with a solid-state Nd:YAG coherent lidar system,” Opt. Lett. 14, 776–778 (1989). [CrossRef] [PubMed]
  8. S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1 μm using Tm,Ho:YAG lasers,” Opt. Lett. 16, 773–775 (1991). [CrossRef] [PubMed]
  9. R. Targ, M. J. Kavaya, R. M. Huffaker, R. L. Bowles, “Coherent lidar airborne wind shear sensor: performance evaluation,” Appl. Opt. 30, 2013–2026 (1991). [CrossRef] [PubMed]
  10. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993). [CrossRef]
  11. R. G. Frehlich, S. Hannon, S. Henderson, “Performance of a 2-μm coherent Doppler lidar for wind measurements,” J. Atmos. Oceanic Technol. 11, 1517–1528 (1994). [CrossRef]
  12. B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sensing 31, 16–27 (1993). [CrossRef]
  13. B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II. Correlogram accumulation,” IEEE Trans. Geosci. Remote Sensing 31, 28–35 (1993). [CrossRef]
  14. R. G. Frehlich, M. J. Yadlowsky, “Performance of mean frequency estimators for Doppler radar and lidar,” J. Atmos. Oceanic Technol. 11, 1217–1230 (1994). [CrossRef]
  15. P. Salamitou, A. Dabas, P. H. Flamant, “Simulation in the time domain for heterodyne coherent laser radar,” Appl. Opt. 34, 499–506 (1995). [CrossRef] [PubMed]
  16. R. G. Frehlich, “Simulation of coherent Doppler lidar performance in the weak signal regime,” J. Atmos. Oceanic Technol. 13, 646–658 (1996). [CrossRef]
  17. B. J. Rye, “Spectral correlation of atmospheric lidar returns with range dependent backscatter,” J. Opt. Soc. Am. A 7, 2199–2207 (1990). [CrossRef]
  18. R. G. Frehlich, “Effects of wind turbulence on coherent Doppler lidar performance,” J. Atmos. Oceanic Technol. 14, 54–75 (1997). [CrossRef]
  19. B. T. Lottman, R. G. Frehlich, “Evaluation of coherent Doppler lidar velocity estimators in nonstationary regimes,” Appl. Opt. 36, 7906–7918 (1997). [CrossRef]
  20. K. Sassen, “The polarization lidar technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991). [CrossRef]
  21. S. W. Henderson, Coherent Technologies, Incorporated, Lafayette, Colo. 80026 (personal communication, 1997).
  22. S. R. Pal, R. Pribluda, A. I. Carswell, “Lidar measurements of cloud-tracked winds,” J. Appl. Meteorol. 33, 35–44 (1994). [CrossRef]
  23. H. Reichmann, Cross Country Soaring (Soaring Society of America, Hobbs, N.M., 1994).
  24. J. Rothermel, D. Cutten, R. M. Hardesty, R. T. Menzies, J. Howell, S. Johnson, D. Tratt, L. Olivier, R. Banta, “The multisensor airborne coherent atmospheric wind sensor,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998). [CrossRef]
  25. R. G. Frehlich, “Coherent Doppler lidar signal covariance including wind shear and wind turbulence,” Appl. Opt. 33, 6472–6481 (1994). [CrossRef] [PubMed]
  26. M. D. Guasta, M. Morandi, L. Stefanutti, “Parameterization of cloud lidar backscattering profiles by means of asymmetrical Gaussians,” Appl. Opt. 34, 3449–3456 (1995). [CrossRef] [PubMed]
  27. M. D. Guasta, M. Morandi, L. Stefanutti, “One year of cloud lidar data from Dumont d’Urville (Antarctica). 1. General overview of geometrical and optical properties,” J. Geophys. Res. 98, 18,575–18,587 (1993).
  28. L. R. Bissonnette, “Multiple scattered aerosol lidar returns: inversion method and comparison with in situ measurements,” Appl. Opt. 34, 6959–6975 (1995). [CrossRef] [PubMed]
  29. R. B. Skull, An Introduction to Boundary Layer Meteorology (Academic, New York, 1988).
  30. S. R. Pal, W. Steinbrecht, A. I. Carswell, “Automated method for lidar determination of cloud-base height and vertical extent,” Appl. Opt. 31, 1488–1494 (1992). [CrossRef] [PubMed]
  31. J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proc. IEEE 57, 1408–1418 (1969). [CrossRef]
  32. J. R. Anderson, “High performance velocity estimators for coherent laser radars,” in Coherent Laser Radar: Technology and Applications, Vol. 12 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), 216–218.
  33. B. T. Lottman, R. G. Frehlich, “Evaluation of the mv (capon) coherent Doppler lidar velocity estimator,” NASA Contract. Rep. 4763 (Marshall Space Flight Center, Huntsville, Ala.1997).
  34. G. M. Ancellet, R. T. Menzies, “Atmospheric correlation-time measurements and effects on coherent Doppler lidar,” J. Opt. Soc. Am. 4, 367–373 (1987). [CrossRef]
  35. J. M. Geist, “Computer generation of correlated Gaussian random variables,” Proc. IEEE 67, 862–863 (1979). [CrossRef]
  36. C. J. Grund, NOAA Environmental Technology Laboratory, Boulder, Colo. 80303 (personal communication, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited