OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 36 — Dec. 20, 1998
  • pp: 8341–8347

Diode-Laser Absorption Measurements of CO2 Near 2.0 μm at Elevated Temperatures

Radu M. Mihalcea, Douglas S. Baer, and Ronald K. Hanson  »View Author Affiliations

Applied Optics, Vol. 37, Issue 36, pp. 8341-8347 (1998)

View Full Text Article

Acrobat PDF (224 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A diode-laser sensor system based on absorption spectroscopy techniques has been developed for nonintrusive measurements of CO2 in high-temperature environments. Survey spectra of the CO2 (20°1,04°1)I–00°0 and (20°1,04°1)II–00°0 bands between 1.966 and 2.035 μm (4915–5085 cm−1) were recorded at temperatures between 296 and 1425 K in a heated static cell and compared with calculated spectra (by using the HITRAN 96/HITEMP database) to find candidate transitions for CO2 detection. High-resolution measurements of the CO2R(56) line shape [(20°1,04°1)II–00°0 band] were used to determine the transition line strength, the self-broadening half-width, and the coefficient of temperature dependence of the self-broadening half-width. The results represent what are believed to be the first measurements of CO2 absorption near 2.0 μm with room-temperature diode lasers. Potential applications of the diode-laser sensor system include in situ combustion measurements and environmental monitoring.

© 1998 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(280.1740) Remote sensing and sensors : Combustion diagnostics
(300.6260) Spectroscopy : Spectroscopy, diode lasers

Radu M. Mihalcea, Douglas S. Baer, and Ronald K. Hanson, "Diode-Laser Absorption Measurements of CO2 Near 2.0 μm at Elevated Temperatures," Appl. Opt. 37, 8341-8347 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, and M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using a multiplexed diode-laser sensor system,” AIAA J. 34, 489–493 (1996).
  2. D. M. Sonnenfroh and M. G. Allen, “Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8-μm room-temperature diode laser,” Appl. Opt. 36, 7970–7977 (1997).
  3. V. Nagali, E. R. Furlong, S. I. Chou, R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “Diode-laser sensor system for multi-species and multi-parameter measurements in combustion flows,” paper AIAA 95–2684, presented at the 31st Joint Propulsion Conference, San Diego, Calif., 10–12 July 1995 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, 1995).
  4. D. S. Baer, R. K. Hanson, M. E. Newfield, and N. K. Gopaul, “Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements,” Opt. Lett. 19, 1900–1902 (1994).
  5. E. R. Furlong, D. S. Baer, and R. K. Hanson, “Combustion control using a multiplexed diode laser sensor system,” in Twenty-Sixth Symposium (International) on Combustion, A. R. Burgess and F. L. Dryer, eds. (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2851–2858.
  6. V. Nagali, S. I. Chou, D. S. Baer, and R. K. Hanson, “Tunable diode laser absorption measurements of CH4 at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
  7. R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “Diode laser sensor for measurements of CO, CO2, and CH4 in combustion flows,” Appl. Opt. 36, 8745–8752 (1997).
  8. R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “A diode-laser sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
  9. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
  10. D. B. Oh, M. E. Paige, A. C. Stanton, and J. A. Silver, “Quantitative, in situ monitoring of combustion radicals using visible and near-infrared diode lasers and high frequency wavelength modulation spectroscopy,” in Proceedings of the Western States Section of the Combustion Institute (The Combustion Institute, Pittsburgh, Pa., 1996), paper 96F-084.
  11. R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “Tunable diode-laser absorption measurements of NO2 near 670 and 395 nm,” Appl. Opt. 35, 4059–4064 (1996).
  12. L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, and R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
  13. L. S. Rothman, R. L. Hawkins, R. B. Wattson, and R. R. Gamache, “Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands,” J. Quant. Spectrosc. Radiat. Transfer 48, 537–566 (1992).
  14. L. S. Rothman, Phillips Laboratory, Geophysics Directorate, Hanscom Air Force Base, Ma., 01731 (personal communication, 1998).
  15. K. P. Vasilevskii, L. E. Danilochinka, and V. A. Kazbanov, “Intensities and halfwidths of CO2 lines in the vibrational-rotational bands at 2.0 μm,” Opt. Spectrosc. 38, 499–500 (1975).
  16. D. Scutaru, L. Rosenmann, J. Taine, R. B. Wattson, and L. S. Rothman, “Measurements and calculations of CO2 absorption at high temperature in the 4.3 and 2.7 μm regions,” J. Quant. Spectrosc. Radiat. Transfer 50, 179–191 (1993).
  17. F. P. J. Valero, C. B. Suarez, and R. W. Boese, “Absolute intensities and pressure broadening coefficients measured at different temperatures for the 201II ← 000 band of 12C16O2 at 4978 cm−1,” J. Quant. Spectrosc. Radiat. Transfer 23, 337–341 (1979).
  18. J. Taine, “A line-by-line calculation of low-resolution radiative properties of CO2-CO-transparent nonisothermal gases mixtures up to 3000 K,” J. Quant. Spectrosc. Radiat. Transfer 30, 371–379 (1983).
  19. P. Arcas, E. Arié, M. Cuisenier, and J. P. Maillard, “The infrared spectrum and molecular constants of CO2 in the 2 μm region,” Can. J. Phys. 61, 857–866 (1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited