OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 36 — Dec. 20, 1998
  • pp: 8406–8419

Modeling of Tm,Ho:YAG and Tm,Ho:YLF 2-μm lasers and calculation of extractable energies

Didier Bruneau, Stéphane Delmonte, and Jacques Pelon  »View Author Affiliations


Applied Optics, Vol. 37, Issue 36, pp. 8406-8419 (1998)
http://dx.doi.org/10.1364/AO.37.008406


View Full Text Article

Enhanced HTML    Acrobat PDF (337 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The development of a model for 2-μm laser operation in Tm,Ho:YAG and YLF crystals pumped in the near infrared is reported. This model, based on a simplified spectroscopic scheme, is fitted to a set of characterization experiments by means of three adjustable parameters. Results show that the excited-state populations are predicted with a relative accuracy of approximately 10% for a large range of pump levels. Using this model, we calculate the extractable energy on short-laser-pulse interactions for the two materials under different operation conditions. We study the sensitivity to pump duration and the optimization of dopant concentrations. We investigate the improvement of the extractable-energy efficiency with multiple-pulse operation. For double-pulse operation the improvement is approximately a factor of 1.5 and leads to overall extractable-energy efficiencies of 16% in YAG and 15% in YLF for an absorbed pump energy of 10 J cm-3.

© 1998 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3580) Lasers and laser optics : Lasers, solid-state
(160.5690) Materials : Rare-earth-doped materials

History
Original Manuscript: March 20, 1998
Revised Manuscript: July 8, 1998
Published: December 20, 1998

Citation
Didier Bruneau, Stéphane Delmonte, and Jacques Pelon, "Modeling of Tm,Ho:YAG and Tm,Ho:YLF 2-μm lasers and calculation of extractable energies," Appl. Opt. 37, 8406-8419 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-36-8406


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. F. Johnson, J. E. Geusic, L. G. Van Uitert, “Coherent oscillations from Tm3+, Ho3+, Yb3+, and Er3+ ions in yttrium aluminum garnet,” Appl. Phys. Lett. 7, 127–129 (1965). [CrossRef]
  2. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993). [CrossRef]
  3. C. J. Grund, “High resolution Doppler lidar measurements of wind and turbulence,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer, New York, 1996), pp. 235–238.
  4. R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, S. Harrell Klein, P. A. Robinson, “Coherent lidar airborne wind sensor. II. Flight test at 2 and 10 μm,” Appl. Opt. 35, 7117–7127 (1996).
  5. J. B. Ghibaudo, J. Y. Labandibar, A. Marini, “Water vapour and wind measurements by a two micron space lidar,” in Proceedings of the 9th Conference on Coherent Laser Radar, K. O. Steinvall, ed. (FOA, Linköping, Sweden, 1997), pp. 7–10.
  6. F. Amzajerdian, M. J. Kavaya, “Development of solid state coherent lidars for global wind measurements,” in Proceedings of the 9th Conference on Coherent Laser Radar, K. O. Steinvall, ed. (FOA, Linköping, Sweden, 1997), pp. 15–17.
  7. J. A. Williams-Byrd, U. N. Singh, N. P. Barnes, G. E. Lockard, E. A. Modlin, J. Yu, “Room-temperature, diode-pumped Ho:Tm:YLF laser amplifiers generating 700 mJ at 2 μm,” in Advanced Solid State Lasers, C. R. Pollocks, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 199–201.
  8. T. Y. Fan, G. Huber, R. L. Byer, P. Mitzcherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron 24, 924–933 (1988). [CrossRef]
  9. G. Rustad, K. Stenerson, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron. 32, 1645–1656 (1996). [CrossRef]
  10. R. R. Petrin, M. G. Jani, R. C. Powell, M. Kokta, “Spectral dynamics of laser-pumped Y3Al5O12:Tm,Ho lasers,” Opt. Mater. 1, 111–124 (1992). [CrossRef]
  11. N. P. Barnes, W. J. Rodriguez, B. M. Walsh, “Ho:Tm:YLF laser amplifiers,” J. Opt. Soc. Am. B 13, 2872–2882 (1996). [CrossRef]
  12. G. Huber, P. Mitzscherlich, T. S. Fan, R. L. Byer, “Energy transfer and inversion saturation in Tm,Ho:YAG,” J. Lumin. 40&41, 509–510 (1988).
  13. G. Armagan, A. M. Buoncristiani, C. H. Bair, A. T. Inge, R. V. Hess, “Investigation of loss processes of Tm and Tm,Ho in YAG,” in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 201–204.
  14. G. Hansson, A. Callenas, C. Nelsson, “Upconversion studies in laser diode pumped Tm,Ho:YLiF4,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 446–449.
  15. L. B. Shaw, R. S. F. Chang, N. Djeu, “Measurement of up-conversion probabilities in Ho:Y3Al5O12 and Tm:Y3Al5O12,” Phys. Rev. B 50, 6609–6619 (1994). [CrossRef]
  16. B. M. Antipenko, V. A. Buchenkov, A. S. Glebov, T. I. Kiseleva, A. A. Nikitichev, V. A. Pismennyi, “Spectroscopy of YAG:CrTmHo laser crystals,” Opt. Spectrosc. 64, 772–774 (1988).
  17. A. Brenier, J. Rubin, R. Moncorge, C. Pedrini, “Excited-state dynamics of the Tm3+ ions and Tm3+ → Ho3+ energy transfers in LiYF4,” J. Phys. (France) 50, 1463–1482 (1989). [CrossRef]
  18. A. A. Nikitichev, “Temperature dependence of the gain in Y3Al5O12:Cr3+:Tm3+:Ho3+,” Sov. J. Quantum Electron. 18, 918–919 (1988). [CrossRef]
  19. G. Armagan, A. M. Buoncristiani, B. Di Bartolo, “Energy transfer and thermalization in YAG:Tm,Ho,” J. Lumin. 48&49, 171–174 (1991).
  20. G. Armagan, B. M. Walsh, N. P. Barnes, E. A. Modlin, A. M. Buoncristiani, “Determination of Tm–Ho rate coefficients from spectroscopic measurements,” in Advanced Solid-State Lasers, T. Y. Fan, B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 141–145.
  21. M. Falconieri, G. Salvetti, “Pumping-laser-fluence dependence of the time resolved fluorescence at 2.09 μm in Tm:Ho–YAG crystals,” Opt. Mater. 3, 157–161 (1994). [CrossRef]
  22. A. Nikitichev, “Upconversion coefficient measurements in Tm–Ho:YLF and YAG crystals,” in Advanced Solid-State Lasers, B. Chai, S. Payne, eds., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), pp. 498–500.
  23. S. R. Bowman, M. J. Winings, R. C. Y. Auyeung, J. E. Tucker, S. K. Searles, B. J. Feldman, “Laser and spectral properties of Cr,Tm,Ho:YAG at 2.1 μm,” IEEE J. Quantum Electron. 27, 2142–2149 (1991). [CrossRef]
  24. S. R. Bowman, G. J. Quarles, B. J. Feldman, “Upconversion losses in flashlamp-pumped Cr,Tm:YAG,” in Advanced Solid-State Lasers, L. L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 169–173.
  25. J. K. Tyminski, D. G. Franich, M. Kokta, “Gain dynamics of Tm:Ho:YAG pumped in the near infrared,” J. Appl. Phys. 65, 3181–3188 (1989). [CrossRef]
  26. N. P. Barnes, E. D. Filer, C. A. Morrison, C. J. Lee, “Ho:Tm lasers. I: Theoretical,” IEEE J. Quantum Electron. 32, 92–103 (1996). [CrossRef]
  27. C. J. Lee, G. Han, N. P. Barnes, “Ho:Tm lasers. II: Experiments,” IEEE J. Quantum Electron. 32, 104–111 (1996). [CrossRef]
  28. S. R. Bowman, J. G. Lynn, S. K. Searles, B. J. Feldman, J. McMahon, W. Whitney, C. Marquardt, D. Epp, G. J. Quarles, K. J. Riley, “Comparative study of diode-pumped two-micron laser materials,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 415–418.
  29. E. D. Filer, N. P. Barnes, F. L. Naranjo, M. N. Kokta, “Spectroscopy and lasing in Ho:Tm:Lu3Al5O12,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 411–414.
  30. E. D. Filer, C. A. Morrison, N. P. Barnes, B. M. Walsh, “YLF isomorphs for Ho and Tm applications,” in Advanced Solid-State Lasers, T. Y. Fan, B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 127–130.
  31. V. A. French, R. C. Powell, “Laser-induced grating measurements of energy migration in Tm,Ho:YAG,” Opt. Lett. 16, 666–668 (1991). [CrossRef] [PubMed]
  32. V. A. French, R. R. Petrin, R. C. Powell, “Energy-transfer processes in Y3Al5O12:Tm,Ho,” Phys. Rev. B 46, 8018–8026 (1992). [CrossRef]
  33. K. M. Dinndorf, H. P. Jensen, “Distribution of stored energy in the excited manifolds of Tm and Ho in 2 micron laser materials,” in Advanced Solid-State Lasers, T. Y. Fan, B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 131–135.
  34. C. A. Morrison, R. P. Leavitt, “Spectroscopic properties of triply ionized lanthanides in transparent host crystals,” in Handbook on the Physics and Chemistry of Rare Earths, K. A. Gschneidner, L. Eyring, eds., (North-Holland, Amsterdam, 1982), pp. 461–692. [CrossRef]
  35. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992). [CrossRef]
  36. S. R. Bowman, M. J. Winings, S. Searles, B. J. Feldman, “Short-pulsed 2.1 μm laser performance of Cr,Tm,Ho,YAG,” IEEE J. Quantum Electron. 27, 1129–1131 (1991). [CrossRef]
  37. W. Koechner, Solid-State Laser Engineering, (Springer-Verlag, Berlin, 1976) Chap. 7, pp. 344–396. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited