OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 36 — Dec. 20, 1998
  • pp: 8453–8459

Increased Efficiency of Vacuum Ultraviolet Generation by Stimulated Anti-Stokes Raman Scattering with Stokes Seeding

Alexandra Goehlich, U. Czarnetzki, and H. F. Döbele  »View Author Affiliations

Applied Optics, Vol. 37, Issue 36, pp. 8453-8459 (1998)

View Full Text Article

Acrobat PDF (202 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Stimulated anti-Stokes Raman scattering in molecular hydrogen allows for the generation of continuously tunable narrow-bandwidth radiation down to the transmission limit of vacuum ultraviolet (VUV) window materials. Simultaneous irradiation of UV-pump radiation (in this application, dye laser radiation of wavelength λ = 372 nm) and of radiation whose wavelength corresponds to the first Stokes component allows a considerable increase in efficiency—by nearly 2 orders of magnitude in the far VUV. The additional Stokes radiation is generated in a simple manner during the passage of the unfocused pump radiation through a high-pressure Raman cell that precedes the VUV Raman cell.

© 1998 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(290.5910) Scattering : Scattering, stimulated Raman

Alexandra Goehlich, U. Czarnetzki, and H. F. Döbele, "Increased Efficiency of Vacuum Ultraviolet Generation by Stimulated Anti-Stokes Raman Scattering with Stokes Seeding," Appl. Opt. 37, 8453-8459 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. P. Bogen, Ph. Mertens, E. Pasch, and H. F. Döbele, “Detection of atomic oxygen and hydrogen in the vacuum UV using a frequency-doubled, Raman-shifted dye laser,” J. Opt. Soc. Am. B 9, 2137–2141 (1992).
  2. H. F. Döbele, “Generation of coherent VUV radiation and its application to plasma diagnostics,” Plasma Sources Sci. Technol. 4, 224–233 (1995).
  3. V. Schulz-von der Gathen, T. Bornemann, V. Kornas, and H. F. Döbele, “VUV generation by high-order CARS,” IEEE J. Quantum Electron. 26, 739–743 (1990).
  4. S. Wada, H. Moriwaka, A. Nakamura, and H. Tashiro, “Injection seeding for the enhancement of higher-order anti-Stokes stimulated Raman scattering,” Opt. Lett. 20, 848–850 (1995).
  5. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  6. J. F. Reintjes, “Coherent ultraviolet and vacuum ultraviolet sources,” in Laser Handbook, M. Bass and M. L. Stitch, eds. (North-Holland, Amsterdam, 1985), Vol. 5.
  7. W. R. Trutna, Jr., Y. K. Park, and R. L. Byer, “The dependence of Raman gain on pump laser bandwidth,” IEEE J. Quantum Electron. QE-15, 648–655 (1979).
  8. J. P. Partanen and M. J. Shaw, “High-power forward Raman amplifiers employing low-pressure gases in light guides. I. Theory and applications,” J. Opt. Soc. Am. B 3, 1374–1389 (1986).
  9. D. J. Brink and D. Proch, “Angular distribution of high-order anti-Stokes stimulated Raman scattering in hydrogen,” J. Opt. Soc. Am. 73, 23–25 (1983).
  10. V. S. Butylkin, V. G. Venkin, V. P. Protasov, P. S. Fisher, Yu. G. Khronopulo, and M. F. Shalyaer, “Effect of phase locking on the dynamics of the anti-Stokes component of stimulated Raman scattering,” Sov. Phys. JETP 43, 430–435 (1976).
  11. G. M. Krochik and Yu. G. Khronopulo, “Conversion of radiation frequency in four-wave parametric resonance processes based on stimulated Raman scattering,” Sov. J. Quantum Electron. 5, 917–921 (1976).
  12. M. Spaan, A. Goehlich, V. Schulz-von der Gathen, and H. F. Döbele, “Experimental tests of a novel Raman cell for vacuum ultraviolet generation to below Lyman-α,” Appl. Opt. 33, 3865–3870 (1994).
  13. W. L. Glab and J. P. Hessler, “Frequency shift and asymmetric line shape of the fourth anti-Stokes component from a hydrogen Raman shifter,” Appl. Opt. 27, 5123–5126 (1988).
  14. W. K. Bischel and M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A. 33, 3113–3123 (1986).
  15. G. I. Chashchina and E. Ya. Shreider, “Determination of hydrogen refraction index in the vacuum spectral range,” Opt. Spektrosk. 66, 274–275 (1989).
  16. T. Larsen, “Gase und Dämpfe,” in Landolt-Börnstein, Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, Vol. 2, Eigenschaften der Materie in ihren Aggregatzuständen, Part 8, Optische Konstanten, 6th ed., K.-H. Hellwege and A. M. Hellwege, eds. (Sprinter-Verlag, Berlin, 1962), Table 5, p. 885.
  17. H. G. Jerrard and D. B. McNeill, Dictionary of Scientific Units (Chapman & Hall, London, 1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited