OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 4 — Feb. 1, 1998
  • pp: 683–690

Spectral calibration requirement for Earth-looking imaging spectrometers in the solar-reflected spectrum

Robert O. Green  »View Author Affiliations


Applied Optics, Vol. 37, Issue 4, pp. 683-690 (1998)
http://dx.doi.org/10.1364/AO.37.000683


View Full Text Article

Enhanced HTML    Acrobat PDF (220 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Earth-looking imaging spectrometers operating in the solar-reflected spectrum measure spectra of the total upwelling radiance for each spatial element in an image. These measurements are used to derive physical parameters of the Earth’s surface and atmosphere from the energy, molecular absorption, and constituent scattering characteristics expressed in each spectrum. To achieve these quantitative objectives, the measured spectra must be spectrally, radiometrically, and spatially calibrated. The ubiquitous presence of numerous, strong, narrow atmosphere and solar absorptions in the upwelling spectral radiance in conjunction with the narrow spectral channels of imaging spectrometers forms the basis for a general spectral calibration requirement. In order to determine the requirement for spectral calibration accuracy, a sensitivity analysis has been completed for imaging spectrometers with contiguously sampled spectral channel response functions of 5, 10, and 20 nm full width at half-maximum from 400 to 2500 nm. This sensitivity analysis shows that spectral calibration errors of 10% and 5% cause significant, spectrally distinct errors in the measured radiance throughout the solar-reflected spectrum. These errors result from the sensitivity of the measured radiance to the exact convolution of the narrow channels of imaging spectrometers with the upwelling spectral radiance that contains narrow atmosphere and solar absorptions. These errors are systematic and add directly to the radiometric calibration uncertainty for every spectrum in the image. This analysis establishes that a spectral calibration accuracy approaching 1% of the full width at half-maximum throughput of the spectral response function for both spectral channel position and shape is necessary to suppress these errors in the measured radiance spectrum.

© 1998 Optical Society of America

OCIS Codes
(300.6170) Spectroscopy : Spectra
(300.6190) Spectroscopy : Spectrometers

History
Original Manuscript: October 11, 1996
Revised Manuscript: January 21, 1997
Published: February 1, 1998

Citation
Robert O. Green, "Spectral calibration requirement for Earth-looking imaging spectrometers in the solar-reflected spectrum," Appl. Opt. 37, 683-690 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-4-683

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited