OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 4 — Feb. 1, 1998
  • pp: 698–718

Process-parameter-dependent optical and structural properties of ZrO2MgO mixed-composite films evaporated from the solid solution

N. K. Sahoo and A. P. Shapiro  »View Author Affiliations


Applied Optics, Vol. 37, Issue 4, pp. 698-718 (1998)
http://dx.doi.org/10.1364/AO.37.000698


View Full Text Article

Enhanced HTML    Acrobat PDF (751 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The process-parameter-dependent optical and structural properties of ZrO2MgO mixed-composite material have been investigated. Optical properties were derived from spectrophotometric measurements. By use of atomic force microscopy, x-ray diffraction analysis, and energy-dispersive x-ray (EDX) analysis, the surface morphology, grain size distributions, crystallographic phases, and process-dependent material composition of films have been investigated. EDX analysis made evident the correlation between the oxygen enrichment in the films prepared at a high level of oxygen pressure and the very low refractive index. Since oxygen pressure can be dynamically varied during a deposition process, coatings constructed of suitable mixed-composite thin films can benefit from continuous modulation of the index of refraction. A step modulation approach is used to develop various multilayer-equivalent thin-film devices.

© 1998 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(240.0310) Optics at surfaces : Thin films
(310.1620) Thin films : Interference coatings
(310.1860) Thin films : Deposition and fabrication
(310.3840) Thin films : Materials and process characterization
(310.6860) Thin films : Thin films, optical properties

History
Original Manuscript: July 7, 1997
Revised Manuscript: September 22, 1997
Published: February 1, 1998

Citation
N. K. Sahoo and A. P. Shapiro, "Process-parameter-dependent optical and structural properties of ZrO2MgO mixed-composite films evaporated from the solid solution," Appl. Opt. 37, 698-718 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-4-698


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Dobrowoloski, R. A. Kemp, “Refinement of optical multilayer systems with different optimization procedure,” Appl. Opt. 29, 2876–2893 (1990). [CrossRef]
  2. N. K. Sahoo, K. V. S. R. Apparao, “Modified complex method for constrained design and optimization of optical multilayer thin-film devices,” Appl. Phys. A 59, 317–326 (1994). [CrossRef]
  3. J.-S. Chen, S. Chao, J.-S. Kao, H. Niu, C.-H. Chen, “Mixed films of TiO2-SiO2 deposited by double electron-beam coevaporation,” Appl. Opt. 35, 90–96 (1996). [CrossRef] [PubMed]
  4. H. Zhang, S. Liu, “Optical compound film deposited by double e-gun,” Thin Solid Films 209, 148–149 (1992). [CrossRef]
  5. S. B. Qadri, E. F. Skelton, P. Lubitz, N. V. Nguyen, H. R. Khan, “Electron beam deposition of ZrO2-ZnO films,” Thin Solid Films 290–291, 80–83 (1996).
  6. R. Bertram, M. F. Ouellette, P. Y. Tse, “Inhomogeneous optical coatings: an experimental study of a new approach,” Appl. Opt. 28, 2935–2939 (1989). [CrossRef] [PubMed]
  7. W. J. Gunning, R. L. Hall, F. J. Woodberry, W. H. Southwell, N. S. Gluck, “Codeposition of continuous composition rugate filters,” Appl. Opt. 28, 2945–2948 (1989). [CrossRef] [PubMed]
  8. R. Jacobsson, “Inhomogeneous and coevaporated homogeneous films for optical applications,” Phys. Thin Films 8, 51–98 (1975).
  9. R. Jacobsson, “Optical properties of a class of inhomogeneous thin films,” Opt. Acta 10, 309–323 (1963). [CrossRef]
  10. A. Feldman, E. N. Farabaugh, W. K. Haller, D. M. Sanders, R. A. Stempniak, “Modifying structure and properties of optical films by co-evaporation,” J. Vac. Sci. Technol. A 4, 2969–2974 (1986). [CrossRef]
  11. J. P. Cheron, F. Tcheliebou, A. Boyer, “Structural properties of Y2O3 stabilized ZrO2 films deposited by reactive thermal coevaporation,” J. Vac. Sci. Technol. A 10, 3207–3209 (1992). [CrossRef]
  12. M. Mesbah, A. Boyer, E. Groubert, L. Martin, “Crystallographic and optical study of ZrO2 partially and totally stabilized with Y2O3,” J. Vac. Sci. Technol. A 8, 3961–3966 (1990). [CrossRef]
  13. C. M. Gilmore, C. Quinn, S. B. Qadri, C. R. Gosset, E. F. Skelton, “Stabilization of tetragonal ZrO2 with Al2O3 in reactive magnetron sputtered thin films,” J. Vac. Sci. Technol. A 5, 2085–2087 (1987). [CrossRef]
  14. Y. Tsou, F. C. Ho, “Optical properties of hafnia and co-evaporated hafnia magnesium fluoride thin films,” Appl. Opt. 35, 5091–5094 (1996). [CrossRef] [PubMed]
  15. S. B. Qadri, E. F. Skelton, M. Z. Harford, R. Jones, P. Lubitz, “e--beam deposition of In2O3 stabilized ZrO2 films,” J. Vac. Sci Technol. A 9, 510–511 (1991). [CrossRef]
  16. F. Tcheliebou, A. Boyer, L. Martin, “Studies on MgO-stabilized zirconia thin films in the UV-visible region,” Thin Solid Films 249, 86–90 (1994). [CrossRef]
  17. D. M. Sanders, E. N. Farabaugh, W. K. Haller, “Glassy optical coatings by multisource evaporation,” in Thin Film Technologies and Special Applications, W. R. Hunter, ed., Proc. SPIE346, 31–38 (1982). [CrossRef]
  18. E. N. Farabaugh, D. M. Sanders, “Microstructure of dielectric thin films formed by e-beam coevaporation,” J. Vac. Sci. Technol. A 1, 356–359 (1983). [CrossRef]
  19. D. L. Porter, A. H. Heuer, “Microstructural development in MgO-stabilized zirconia (Mg-PSZ),” J. Am. Ceram. Soc. 62, 298–305 (1979). [CrossRef]
  20. M. M. El-Nahass, B. A. Khalifa, A. M. Abd El-Rahman, R. El-Ariny, “Structural and optical properties of ZnSexTe1-x solid solution in thin film form,” Appl. Phys. A 63, 81–86 (1996). [CrossRef]
  21. R. H. Hannink, “Microstructural development of sub-eutectoid aged MgO–ZrO2 alloys,” J. Mater. Sci 18, 457–470 (1983). [CrossRef]
  22. M. J. Readey, A. H. Heuer, R. W. Steinbrech, “Annealing of test specimens of high-toughness magnesia-partially-stabilized zirconia,” J. Am. Ceram. Soc. 71, c2–c6 (1988). [CrossRef]
  23. M. L. Balmer, F. F. Lange, C. G. Levi, “Metastable phase selection and partitioning in ZrO2-MgO processed from liquid precursors,” J. Am. Ceram. Soc. 75, 946–952 (1992). [CrossRef]
  24. C. F. Grain, “Phase relations in the ZrO2-MgO system,” J. Am. Ceram. Soc. 50, 288–290 (1967). [CrossRef]
  25. N. H. Brett, M. Gonzalez, J. Bouillot, J. C. Niepce, “Neutron and x-ray diffraction studies on pure and magnesia-doped zirconia gels decomposed in vacuo,” J. Mater. Sci 19, 1349–1358 (1984). [CrossRef]
  26. O. Ruff, F. Ebert, “Ceramics of highly refractory materials,” Z. Anorg. Allgem. Chem. 180, 19–41 (1929). [CrossRef]
  27. H. J. Rossel, R. H. J. Hannink, “The phase Mg2Zr5O12 in MgO partially stabilized zirconia,” in Science and Technology of Zirconia II, Vol. 12 of Advances in Ceramics, N. Claussen, M. Rühle, A. H. Heuer, eds. (The American Ceramic Society, Inc., Columbus, Ohio, 1984), pp. 139–151.
  28. D. L. Wood, K. Nassau, “Refractive index of cubic zirconia stabilized with yttria,” Appl. Opt. 21, 2978–2981 (1982). [CrossRef] [PubMed]
  29. N. K. Sahoo, K. V. S. R. Apparao, “Process-parameter optimization of Sb2O3 films in the ultraviolet and visible region for interferometric applications,” Appl. Phys. A 63, 195–202 (1996).
  30. B. Bovard, F. J. Van Milligen, M. J. Messerly, S. G. Saxe, H. A. Macleod, “Optical constants derivation for an inhomogeneous thin film from in situ transmission measurements,” Appl. Opt. 24, 1803–1807 (1985). [CrossRef] [PubMed]
  31. D. P. Arndt, R. M. A. Azzam, J. M. Bennett, J. P. Borgogno, C. K. Carniglia, W. E. Case, J. A. Dobrowolski, U. J. Gibson, T. Tuttle Hart, F. C. Ho, V. A. Hodgkin, W. P. Klapp, H. A. Macleod, E. Pelletier, M. K. Purvis, D. M. Quinn, D. H. Strome, R. Swenson, P. A. Temple, T. F. Thonn, “Multiple determination of the constants of thin-film coating materials,” Appl. Opt. 23, 3571–3596 (1984). [CrossRef] [PubMed]
  32. M. Nowak, “Determination of optical constants and average thickness of inhomogeneous-rough thin films using spectral dependence of optical transmittance,” Thin Solid Films 254, 200–210 (1995). [CrossRef]
  33. J. P. Borgogno, B. Lazarides, E. Pelletier, “Automatic determination of the optical constants of inhomogeneous thin films,” Appl. Opt. 21, 4020–4029 (1982). [CrossRef] [PubMed]
  34. E. E. Khawaja, “The determination of the refractive index and thickness of a transparent film,” J. Phys. D. 9, 1939–1943 (1976). [CrossRef]
  35. R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E 16, 1214–1222 (1983). [CrossRef]
  36. J. P. Borgogno, P. Bousquet, F. Flory, B. Lazarides, E. Pelletier, P. Roche, “Inhomogeneity in films: limitation of the accuracy of optical monitoring of thin films,” Appl. Opt. 20, 90–94 (1981). [CrossRef] [PubMed]
  37. M. Harris, H. A. Macleod, S. Ogura, E. Pelletier, B. Vidal, “The relationship between optical inhomogeneity and film structure,” Thin Solid Films 57, 173–178 (1979). [CrossRef]
  38. S. Ogura, “Dynamic characteristics in optically inhomogeneous films,” in Thin Films for Optical Systems, K. H. Guenther, ed., Proc. SPIE1782, 377–388 (1992). [CrossRef]
  39. G. Ghosh, “Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses,” Appl. Opt. 36, 1540–1546 (1997). [CrossRef] [PubMed]
  40. C.-K. Kwok, C. R. Aita, “The transition from αZr to αZrO2 growth in sputter-deposited films as a function of gas O2 content, rare-gas type and cathode voltage,” J. Vac. Sci Technol. A 7, 1235–1239 (1989). [CrossRef]
  41. C.-K. Kwok, C. R. Aita, “Near-bandgap optical behavior of sputter deposited α- and α + β- ZrO2 films,” J. Appl. Phys. 66, 2756–2758 (1989). [CrossRef]
  42. C.-K. Kwok, C. R. Aita, “Indirect band gap in α-ZrO2,” J. Vac. Sci Technol. A 8, 3345–3346 (1990). [CrossRef]
  43. A. V. Tikhonravov, M. K. Trubetskov, A. N. Tikhonov, O. B. Tcsherednichenko, B. G. Lysoi, K. V. Mikhailova, B. T. Sullivan, J. A. Dobrowolski, “Study of thin film inhomogeneity with a fast-scanning acoustooptic spectrophotometer,” in Developments in Optical Component Coatings, I. Reid, ed., Proc. SPIE2776, 212–220 (1996). [CrossRef]
  44. A. F. Hebard, A. T. Fiory, S. Nakahara, R. H. Eick, “Oxygen-rich polycrystalline magnesium oxide—a high quality thin-film dielectric,” Appl. Phys. Lett. 48, 520–522 (1986). [CrossRef]
  45. A. Kucírková, K. Navrátil, L. Pajasová, V. Vorlícek, “Influence of oxygen concentration on optical properties of semi-insulating polycrystalline silicon films,” Appl. Phys. A 63, 495–503 (1996). [CrossRef]
  46. F. Jones, “High-rate reactive sputter deposition of zirconium dioxide,” J. Vac. Sci. Technol. A 6, 3088–3097 (1988). [CrossRef]
  47. E. E. Khawaja, F. Bouamrane, A. B. Hallak, M. A. Daous, M. A. Salim, “Observation of oxygen enrichment in zirconium oxide films,” J. Vac. Sci Technol. A 11, 580–587 (1993). [CrossRef]
  48. M. Yoshitake, K. Takiguchi, Y. Suzuki, S. Ogawa, “Effect of oxygen pressure in reactive ion-beam sputter deposition of zirconium oxides,” J. Vac. Sci. Technol. A 6, 2326–2332 (1988). [CrossRef]
  49. P. J. Martin, R. P. Netterfield, W. G. Sainty, “Modification of the optical and structural properties of dielectric ZrO2 films by ion-assisted deposition,” J. Appl. Phys. 55, 235–241 (1984). [CrossRef]
  50. H. J. Cho, C. K. Hwangbo, “Optical inhomogeneity and microstructure of ZrO2 thin films prepared by ion-assisted deposition,” Appl. Opt. 35, 5545–5552 (1996). [CrossRef] [PubMed]
  51. R. E. Klinger, C. K. Carniglia, “Optical and crystalline inhomogeneity in evaporated zirconia films,” Appl. Opt. 24, 3184–3187 (1985). [CrossRef] [PubMed]
  52. J. A. Dobrowolski, P. D. Grant, R. Simpson, A. J. Waldorf, “Investigation of the evaporation process conditions on the optical constants of zirconia films,” Appl. Opt. 28, 3997–4005 (1989). [CrossRef] [PubMed]
  53. P. Vuoristo, T. Mäntylä, P. Kettunen, R. Lappalainen, “RBS analysis of sputter-deposited MgO films,” Vacuum 42, 1001–1004 (1991). [CrossRef]
  54. C. Deumié, R. Richier, P. Dumas, C. Amra, “Multiscale roughness in optical multilayers: atomic force microscopy and light scattering,” Appl. Opt. 35, 5583–5594 (1996). [CrossRef]
  55. F. Biscarini, P. Samorí, A. Lauria, P. Ostoja, R. Zamboni, C. Taliani, P. Viville, R. Lazzaroni, J. L. Brédas, “Morphology and roughness of high-vacuum sublimed oligomer thin films,” Thin Solid Films 284-285, 439–443 (1996). [CrossRef]
  56. C. Amra, C. Deumié, D. Torricini, P. Roche, R. Galindo, P. Dumas, F. Salvan, “Overlapping of roughness spectra measured in macroscopic (optical) and microscopic (AFM) bandwidths,” in Optical Interference Coatings, F. Abeles, ed., Proc. SPIE2253, 614–630 (1994). [CrossRef]
  57. A. Duparré, S. Jakobs, “Combination of surface characterization techniques for investigating optical thin-film components,” Appl. Opt. 35, 5052–5058 (1996). [CrossRef]
  58. T. K. S. Wong, W. K. Man, “Scanning probe microscopy and tunneling measurements of polycrystalline tin oxide films,” Thin Solid Films 287, 45–50 (1996). [CrossRef]
  59. I. Y. Sokolov, “On the recovery of the spectroscopic image in atomic force microscopy,” J. Vac. Sci. Technol. A 14, 2901–2904 (1996). [CrossRef]
  60. U. Kaiser, M. Adamik, G. Sáfrán, P. B. Barna, S. Laux, W. Richter, “Growth structure investigation of MgF2 and NdF3 films grown by molecular beam deposition on CaF2 (111) substrates,” Thin Solid Films 280, 5–15 (1996). [CrossRef]
  61. P. Duwez, F. Odell, “Phase relationships in the system zirconia-ceria,” J. Am. Ceram. Soc. 33, 274–283 (1950). [CrossRef]
  62. W. H. Hall, “X-ray line broadening in metals,” Proc. Phys. Soc. London Sec. A 62, 741–743 (1949). [CrossRef]
  63. R. Jenkins, R. L. Snyder, Introduction to X-ray Powder Diffractometry (Wiley-Interscience, New York, 1996). [CrossRef]
  64. B. Lewis, J. C. Anderson, Nucleation and Growth of Thin Films (Academic, New York, 1978).
  65. H. A. Macleod, Thin Film Optical Filters, 2nd ed. (Macmillan, New York, 1986), Chap. 6, p. 194.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited