OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 4 — Feb. 1, 1998
  • pp: 772–778

Determination of tissue optical properties from diffuse reflectance profiles by multivariate calibration

Jan S. Dam, Peter E. Andersen, Torben Dalgaard, and Paul Erik Fabricius  »View Author Affiliations


Applied Optics, Vol. 37, Issue 4, pp. 772-778 (1998)
http://dx.doi.org/10.1364/AO.37.000772


View Full Text Article

Enhanced HTML    Acrobat PDF (179 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a method for determining the reduced scattering and absorption coefficients of turbid biological media from the spatially resolved diffuse reflectance. A Sugeno Fuzzy Inference System in conjunction with data preprocessing techniques is employed to perform multivariate calibration and prediction on reflectance data generated by Monte Carlo simulations. The preprocessing consists of either a principal component analysis or a new, extended curve-fitting procedure originating from diffusion theory. Prediction tests on reflectance data with absorption coefficients between 0.04 and 0.06 mm-1 and reduced scattering coefficients between 0.45 and 0.99 mm-1 show the root-mean-square error of this method to be 0.25% for both coefficients. With reference to practical applications, we also describe how the prediction accuracy is affected by using relative instead of absolute reflectance data, by imposing measurement noise on the reflectance data, and by changing the number and the position of detectors.

© 1998 Optical Society of America

OCIS Codes
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(160.4760) Materials : Optical properties
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.7050) Medical optics and biotechnology : Turbid media
(200.4260) Optics in computing : Neural networks

History
Original Manuscript: March 17, 1997
Revised Manuscript: July 2, 1997
Published: February 1, 1998

Citation
Jan S. Dam, Peter E. Andersen, Torben Dalgaard, and Paul Erik Fabricius, "Determination of tissue optical properties from diffuse reflectance profiles by multivariate calibration," Appl. Opt. 37, 772-778 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-4-772


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. J. Welch, M. J. C. van Gemert, W. M. Star, B. C. Wilson, “Overview of tissue optics,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), Chap. 2.
  2. R. A. J. Groenhuis, H. A. Ferwerda, J. J. Ten Bosch, “Scattering and absorption of turbid materials determined from reflection measurements. 2: Measuring method and calibration,” Appl. Opt. 22, 2463–2467 (1983). [CrossRef] [PubMed]
  3. J. M. Schmitt, G. X. Zhou, E. C. Walker, R. T. Wall, “Multilayer model of photon diffusion in skin,” J. Opt. Soc. Am. A 7, 2141–2153 (1990). [CrossRef] [PubMed]
  4. B. C. Wilson, S. L. Jacques, “Optical reflectance and transmission of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990). [CrossRef]
  5. T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992). [CrossRef] [PubMed]
  6. T. J. Farrell, B. C. Wilson, M. S. Patterson, “The use of neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37, 2281–2286 (1992). [CrossRef] [PubMed]
  7. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996). [CrossRef] [PubMed]
  8. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997). [CrossRef] [PubMed]
  9. H. C. van de Hulst, Multiple Light Scattering (Academic, New York, 1980), Vols. 1 and 2.
  10. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996). [CrossRef] [PubMed]
  11. S. J. Madsen, B. C. Wilson, M. S. Patterson, T. D. Park, S. L. Jacques, Y. Hefetz, “Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements,” Appl. Opt. 31, 3509–3517 (1992). [CrossRef] [PubMed]
  12. S. Fantini, M. A. Francheschini-Fantini, J. S. Maier, S. A. Walker, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995). [CrossRef]
  13. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vols. 1 and 2.
  14. S. L. Jacques, L. Wang, “Monte Carlo modeling of light transport in tissue,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), Chap. 4.
  15. W. M. Star, “Diffusion theory of light transport,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), Chap. 6.
  16. H. Martens, T. Næs, Multivariate Calibration (Wiley, New York, 1994).
  17. T. Tagaki, M. Sugeno, “Fuzzy identifications of systems and its applications to modelling and control,” IEEE Trans. Syst. Man Cybern. 15, 116–132 (1985). [CrossRef]
  18. S. T. Flock, B. C. Wilson, M. S. Patterson, “Monte Carlo modeling of light propagation in highly scattering tissues. II. Comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36, 1169–1173 (1989). [CrossRef] [PubMed]
  19. W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissue,” IEEE J. Quantum Electron. 26, 2166–2185 (1990). [CrossRef]
  20. P. Bolin, L. E. Preuss, R. C. Taylor, R. J. Ference, “Refractive index of some mammalian tissues using a fiber optic cladding method,” Appl. Opt. 28, 2297–2303 (1989). [CrossRef] [PubMed]
  21. L. Wang, S. L. Jacques, Monte Carlo Modeling of Light Transport in Multi-Layered Tissues in Standard C (University of Texas, M. D. Anderson Cancer Center, Houston, Tex., 1992).
  22. J. R. Mourant, J. Boyer, A. H. Hielscher, I. J. Bigio, “Influence of the scattering phase function on light transport measurements in turbid media performed with small source–detector separations,” Opt. Lett. 21, 546–548 (1996). [CrossRef] [PubMed]
  23. P. E. Andersen, J. S. Dam, P. M. Pedersen, P. Bjerring, “Local diffuse reflectance from a multilayered skin tissue model,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 515–526 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited