OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 5 — Feb. 10, 1998
  • pp: 871–883

Cellular interconnects optimization algorithm for optoelectronic single-instruction multiple data

Bogdan Hoanca and Alexander A. Sawchuk  »View Author Affiliations


Applied Optics, Vol. 37, Issue 5, pp. 871-883 (1998)
http://dx.doi.org/10.1364/AO.37.000871


View Full Text Article

Enhanced HTML    Acrobat PDF (320 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a novel algorithm for designing optimal cellular interconnects (OCI’s), which can significantly accelerate the communications among processors in single-instruction multiple-data machines with optoelectronic interconnections. We present the foundations of the OCI architecture and show that the optoelectronic OCI is the optimal topology for a space-invariant interconnect pattern. The OCI is optimal in achieving a minimum number of clock cycles per data shift for a given number of optoelectronic links. In addition, our algorithm for designing the OCI is deterministic, whereas previous designs required a trial-and-error procedure.

© 1998 Optical Society of America

OCIS Codes
(040.1240) Detectors : Arrays
(060.4510) Fiber optics and optical communications : Optical communications
(200.4650) Optics in computing : Optical interconnects
(200.4960) Optics in computing : Parallel processing

History
Original Manuscript: September 3, 1997
Revised Manuscript: September 3, 1997
Published: February 10, 1998

Citation
Bogdan Hoanca and Alexander A. Sawchuk, "Cellular interconnects optimization algorithm for optoelectronic single-instruction multiple data," Appl. Opt. 37, 871-883 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-5-871


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Hwang, Advanced Computer Architecture: Parallelism, Scalability, Programmability (McGraw-Hill, New York, 1993).
  2. H. S. Stone, J. Crocke, “Computer Architecture in the 1990s,” Computer 24, 30–38 (1991). [CrossRef]
  3. H. J. Siegel, Interconnection Networks for Large-Scale Parallel Processing (McGraw-Hill, New York, 1990).
  4. H. C. Shi, G. X. Ritter, J. N. Wilson, “A fast general algorithm for extracting image features on SIMD mesh-connected computers,” Pattern Recogn. Lett. 30, 1205–1211 (1997). [CrossRef]
  5. H. N. Kim, M. J. Irwin, R. M. Owens, “Motion analysis on the micro grained array processor,” Real-time Imaging 3, 101–110 (1997). [CrossRef]
  6. D. G. Beetner, R. M. Arthur, “Generation of synthetic-focus images from pulse-echo ultrasound using difference-equations,” IEEE Trans. Med. Imaging 15, 665–672 (1996). [CrossRef] [PubMed]
  7. X. D. Wang, V. P. Roychowdhury, P. Balasingam, “Scaleable massively-parallel algorithms for computational nanoelectronics,” Parallel Computing 22, 1931–1963 (1997). [CrossRef]
  8. J. Brown, P. C. Hansen, J. Wasniewski, Z. Zlatev, “Comparing the performance of SIMD computers by running large air-pollution models,” Supercomputer 12, 21–35 (1996).
  9. C. B. Kuznia, “Cellular hypercube interconnections for optoelectronic smart pixel cellular arrays,” Ph.D. dissertation (University of Southern California, Los Angeles, California, 1994).
  10. P. Sweazey, “Limits of Performance of Backplane Buses,” in Digital Bus Handbook (McGraw-Hill, New York, 1990).
  11. A. Louri, H. Sung, “3D optical interconnects for high-speed interchip and interboard communications,” Computer 27, 27–37 (1994). [CrossRef]
  12. J. W. Goodman, F. J. Leonberg, S. Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984). [CrossRef]
  13. A. A. Sawchuk, C. S. Raghavandra, B. K. Jenkins, A. Varma, “Optical crossbar networks,” IEEE Computer 20, 50–62 (1987). [CrossRef]
  14. P. B. Berra, A. Ghafoor, M. Guizani, S. J. Marcinkowski, P. A. Mitkas, “Optics and supercomputing,” Proc. IEEE 77, 1797–1815 (1989). [CrossRef]
  15. M. R. Feldman, C. C. Guest, T. J. Drabik, S. C. Esner, “Comparison between electrical and free space optical interconnects for fine grain processor arrays based on interconnect density capabilities,” Appl. Opt. 28, 3820–3829 (1989). [CrossRef] [PubMed]
  16. D. A. B. Miller, “Optics for low-energy communication inside digital processors: quantum detectors, sources, and modulators as efficient impedance converters,” Opt. Lett. 14, 146–148 (1989). [CrossRef] [PubMed]
  17. D. M. Chiarulli, S. P. Levitan, R. G. Mehlen, M. Bidnurkar, R. Ditmore, G. Gravenstreter, Z. Guo, C. Qiao, M. F. Sakr, J. P. Teza, “Optoelectronic buses for high-performance computing,” Proc. IEEE 82, 1701–1709 (1994). [CrossRef]
  18. F. E. Kiamilev, P. Marchand, A. V. Krishnamoorti, S. C. Esner, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks,” IEEE J. Lightwave Technol. 9, 1674–1692 (1991). [CrossRef]
  19. A. D. McAulay, Optical Computer Architectures: The Application of Optical Concepts to Next Generation Computers (Wiley, New York, 1991).
  20. B. K. Jenkins, P. Chavel, R. Forchheimer, A. A. Sawchuk, T. C. Strand, “Architectural implications of a digital optical processor,” Appl. Opt. 23, 3465–3474 (1984). [CrossRef] [PubMed]
  21. Y. Sheng, “Space invariant multiple imaging for hypercube interconnections,” Appl. Opt. 29, 1101–1105 (1990). [CrossRef] [PubMed]
  22. A. Louri, H. Sung, “Efficient implementation methodology for three-dimensional space-invariant hypercube based optical interconnection networks,” Appl. Opt. 32, 7200–7209 (1993). [CrossRef] [PubMed]
  23. A. Louri, S. Furlonge, “Feasibility study of a scaleable optical interconnection network for massively parallel processing systems,” Appl. Opt. 35, 1296–1308 (1996). [CrossRef] [PubMed]
  24. J.-F. Lin, A. A. Sawchuk, “Optoelectronic communication speedup on mesh processors using reduced cellular hypercube interconnections,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 269–271.
  25. C. W. Stirk, J. Neff, “The cost of optical interconnects versus MCM’s,” in Digest of Topical Meeting on Optics in Computing ’97 (Optical Society of America, Washington, D.C., 1997, pp. 21–23.
  26. J. Jahns, M. M. Downs, M. E. Prise, “Damman gratings for laser beam shaping,” Opt. Eng. 28, 1267–1275 (1989). [CrossRef]
  27. M. R. Feldman, C. C. Guest, “Holograms for optical interconnects for very large scale integrated circuits fabricated by electron-beam lithography,” Opt. Eng. 28, 915–921 (1989). [CrossRef]
  28. K.-S. Huang, C. B. Kuznia, B. K. Jenkins, A. A. Sawchuk, “Parallel architectures for digital optical cellular image processing,” Proc. IEEE 82, 1711–1723 (1994). [CrossRef]
  29. F. Sauer, J. Jahns, C. R. Nijander, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1560 (1994). [CrossRef]
  30. C. B. Kuznia, A. A. Sawchuk, “Time multiplexing and control for optical cellular-hypercube arrays,” Appl. Opt. 35, 1836–1847 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited