OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 5 — Feb. 10, 1998
  • pp: 889–911

Space-variant interconnections based on diffractive optical elements for neural networks: architectures and cross-talk reduction

Ching-Chu Huang, B. Keith Jenkins, and Charles B. Kuznia  »View Author Affiliations


Applied Optics, Vol. 37, Issue 5, pp. 889-911 (1998)
http://dx.doi.org/10.1364/AO.37.000889


View Full Text Article

Enhanced HTML    Acrobat PDF (2013 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical architectures for fully connected and limited-fan-out space-variant weighted interconnections based on diffractive optical elements for fixed-connection multilayer neural networks are investigated and compared in terms of propagation lengths, system volumes, connection densities, and interconnection cross talk. For a small overall system volume the limited-fan-out architecture can accommodate a much larger number of input and output nodes. However, the interconnection cross talk of the limited-fan-out space-variant architecture is relatively high owing to noise from the diffractive-optical-element reconstructions. Therefore a cross-talk reduction technique based on a modified design procedure for diffractive optical elements is proposed. It rearranges the reconstruction pattern of the diffractive optical elements such that less noise lands on each detector region. This technique is verified by the simulation of one layer of an interconnection system with 128 × 128 input nodes, 128 × 128 output nodes, and weighted connections that fan out from each input node to the nearest 5 × 5 array of output nodes. In addition to a significant cross-talk reduction, this technique can reduce the propagation length and system volume.

© 1998 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(200.4650) Optics in computing : Optical interconnects
(200.4700) Optics in computing : Optical neural systems

History
Original Manuscript: April 28, 1997
Revised Manuscript: September 4, 1997
Published: February 10, 1998

Citation
Ching-Chu Huang, B. Keith Jenkins, and Charles B. Kuznia, "Space-variant interconnections based on diffractive optical elements for neural networks: architectures and cross-talk reduction," Appl. Opt. 37, 889-911 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-5-889


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Arbib, ed., The Handbook of Brain Theory and Neural Networks (MIT Press, Cambridge, 1995).
  2. C. Mead, Analog VLSI and Neural Systems (Addison-Wesley, New York, 1989). [CrossRef]
  3. Special issue on neural networks, Appl. Opt. 26, December1987.
  4. Special issue on neural networks, Appl. Opt. 32, March1993.
  5. H. J. Caulfield, J. Kinser, S. K. Rogers, “Optical neural networks,” Proc. IEEE 77, 1573–1582 (1989). [CrossRef]
  6. S. Kakizaki, P. Horan, “Limitations of optical lateral intraconnection of smart pixel arrays,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 201–203.
  7. D. S. Wills, N. M. Jokerst, M. Brooke, A. Brown, “A two layer image processing architecture incorporating integrated focal plane detectors and through-wafer optical interconnect,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 19–22.
  8. G. Yayla, A. V. Krishnamoorthy, G. C. Marsden, S. C. Esener, “A prototype 3D optically interconnected neural network,” Proc. IEEE 82, 1749–1762 (1994). [CrossRef]
  9. W. B. Veldkamp, “Wireless focal planes: on the road to amacronic sensors,” IEEE J. Quantum Electron. 29, 801–813 (1993). [CrossRef]
  10. A. V. Krishnamoorthy, G. Yayla, G. C. Marsden, S. C. Esener, “A scalable optoelectronic neural system using free-space optical interconnects,” IEEE Trans. Neural Net. 3, 404–413 (1992). [CrossRef]
  11. C. Kyriakakis, Z. Karim, A. R. Tanguay, R. F. Cartland, A. Madhukar, S. Piazzolla, B. K. Jenkins, C. B. Kuznia, A. A. Sawchuk, C. von der Malsburg, “Photonic implementations of neural networks,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 128–130.
  12. C. C. Huang, B. K. Jenkins, C. B. Kuznia, “Weighted space-variant local interconnections based on micro-optic components: crosstalk analysis and reduction,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 280–282.
  13. C. H. Wang, B. K. Jenkins, J. M. Wang, “Visual cortex operations and their implementation using the incoherent optical neuron model,” Appl. Opt. 32, 1876–1887 (1993). [CrossRef] [PubMed]
  14. D. C. Van Essen, C. H. Anderson, “Information processing strategies and pathways in the primate retina and visual cortex,” in Introduction Neural and Electronic Networks, S. F. Zornetzer, J. L. Davis, C. Lau, eds., (Academic, San Diego, Calif., 1990), Chap. 3.
  15. R. L. De Valois, K. K. De Valois, Spatial Vision (Oxford U. Press, New York, 1990).
  16. P. Keller, A. Gmitro, “Design and analysis of fixed planar holographic interconnects for optical neural networks,” Appl. Opt. 32, 5517–5526 (1992). [CrossRef]
  17. M. P. Dames, R. J. Dowling, P. McKee, D. Wood, “Efficient optical elements to generate intensity weighted spot arrays: design and fabrication,” Appl. Opt. 30, 2685–2691 (1991). [CrossRef] [PubMed]
  18. M. R. Taghizadeh, J. Turunen, “Synthetic diffractive elements for optical interconnection,” Opt. Comput. Process. 2, 221–242 (1992).
  19. M. Feldman, “Diffractive optics move into the commercial arena,” Laser Focus World 30, 143–151 (Oct.1994).
  20. M. W. Farn, “Modeling of diffractive optics,” in Diffractive Optics, Vol. 10 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 48–51.
  21. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968).
  22. R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttgart) 35, 237–246 (1972).
  23. F. Wyrowski, “Diffractive optical elements: iterative calculation of quantized, blazed phase structures,” J. Opt. Soc. Am. A 7, 961–969 (1990). [CrossRef]
  24. F. McCormick, “Free-space optical interconnects for 3-D optoelectronic computing,” paper presented at the Optical Society of America Annual Meeting, Portland, Oregon, 10–15 September1995, paper ThCC1.
  25. M. Warren, T. Du, K. Lear, S. Kilcoyne, R. Carson, J. Wendt, G. Vawter, M. Lovejoy, O. Blum, D. Craft, R. Schneider, “Free-space optical interconnect for stacked multi-chip modules based on vertical-cavity laser-arrays with integrated diffractive microlenses,” paper presented at the Optical Society of America Annual Meeting, Portland, Oregon, 10–15 September 1995, paper ThCC2.
  26. K. Ananthanarayanan, C. Chen, S. DeMars, C. Huang, D. Su, C. Kuznia, C. Kyriakakis, Z. Karim, B. Jenkins, A. Sawchuk, A. Tanguay, “Multilayer electronic/photonic multichip modules with vertical optical interconnections,” paper presented at the Optical Society of America Annual Meeting, Portland, Oregon, 10–15 September 1995, paper ThCC7.
  27. A. Goldstein, B. Jenkins, “Neural-network object recognition algorithm for real-time implementation on 3-D photonic multichip modules,” paper presented at the Optical Society of America Annual Meeting, Rochester, N.Y., 20–24 October 1996 (Optical Society of America, Washington, D.C., 1996), paper ThKK2.
  28. B. K. Jenkins, P. Chavel, R. Forchheimer, A. A. Sawchuk, T. C. Strand, “Architectural implications of a digital optical processor,” Appl. Opt. 23, 3465–3474 (1984). [CrossRef] [PubMed]
  29. P. Keller, A. Gmitro, “Computer-generated holograms for optical neural networks: on-axis versus off-axis geometry,” Appl. Opt. 32, 1304–1310 (1993). [CrossRef] [PubMed]
  30. M. Feldman, C. Guest, “Iterative encoding of high-efficiency holograms for generation of spot arrays,” Opt. Lett. 14, 479–481 (1989). [CrossRef] [PubMed]
  31. A. Vasara, M. R. Taghizadeh, J. Turunen, J. Westerholm, E. Noponen, H. Ichikawa, J. M. Miller, T. Jaakkola, S. Kuisma, “Binary surface-relief gratings for array illumination in digital optics,” Appl. Opt. 31, 3320–3336 (1992). [CrossRef] [PubMed]
  32. C. H. Wang, B. K. Jenkins, “Subtracting incoherent optical neuron model: analysis, experiment, and applications,” Appl. Opt. 29, 2171–2186 (1990). [CrossRef] [PubMed]
  33. J. F. Lin, A. A. Sawchuk, “Design of diffractive optical elements with optimization of the signal-to-noise ratio and without a dummy area,” Appl. Opt. 36, 3155–3164 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited