OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 6 — Feb. 20, 1998
  • pp: 1032–1037

Single-mode optical waveguides fabricated from fluorinated polyimides

Junya Kobayashi, Tohru Matsuura, Shigekuni Sasaki, and Tohru Maruno  »View Author Affiliations


Applied Optics, Vol. 37, Issue 6, pp. 1032-1037 (1998)
http://dx.doi.org/10.1364/AO.37.001032


View Full Text Article

Enhanced HTML    Acrobat PDF (202 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Buried channel optical waveguides were fabricated from fluorinated polyimides. They operated in single mode and showed an optical loss of less than 0.3 and 0.7 dB/cm for TE and TM polarizations, respectively, at a wavelength of 1.3 μm. Moreover, these waveguides had high heat and moisture resistance; the optical loss did not significantly change after heating at 380 °C for 1 h or after exposure to 85% relative humidity at 85 °C for over 200 h.

© 1998 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(230.7370) Optical devices : Waveguides

History
Original Manuscript: March 10, 1997
Revised Manuscript: July 7, 1997
Published: February 20, 1998

Citation
Junya Kobayashi, Tohru Matsuura, Shigekuni Sasaki, and Tohru Maruno, "Single-mode optical waveguides fabricated from fluorinated polyimides," Appl. Opt. 37, 1032-1037 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-6-1032


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Kurokawa, N. Takato, Y. Katayama, “Polymer optical circuits for multimode optical fiber systems,” Appl. Opt. 19, 3124–3129 (1980). [CrossRef] [PubMed]
  2. D. H. Hartman, G. R. Lalk, J. W. Howse, R. R. Krchnavek, “Radiant cured polymer optical waveguides on printed circuit boards for photonic interconnection use,” Appl. Opt. 28, 40–47 (1989). [CrossRef] [PubMed]
  3. T. Izawa, “Plastic planar waveguides for optical interconnects,” in Proceedings of the 17th European Conference on Optical Communication and the Eight International Conference on Integrated Optics and Optical Fibre Communication (Société des Electriciens et des Electroniciens, Paris, 1991), pp. 97–100.
  4. B. L. Booth, “Low loss channel waveguides in polymers,” J. Lightwave Technol. 7, 1445–1453 (1989). [CrossRef]
  5. S. Imamura, R. Yoshimura, T. Izawa, “Polymer channel waveguides with low loss at 1.3 μm,” Electron. Lett. 27, 1342–1343 (1991). [CrossRef]
  6. N. Keil, H. H. Yao, C. Zawadzki, B. Strebel, “4 × 4 polymer thermo-optic directional coupler switch at 1.55 μm,” Electron. Lett. 30, 639–640 (1994). [CrossRef]
  7. M. Kagami, H. Ito, T. Ichikawa, S. Kato, M. Matsuda, N. Takahashi, “Fabrication of large-core, high-Δ optical waveguides in polymers,” Appl. Opt. 34, 1041–1046 (1995). [CrossRef] [PubMed]
  8. D. A. Christensen, “Plasma-etched polymer waveguides for intrachip optical interconnects,” in Optoelectronic Materials, Devices, Packaging, and Interconnects, T. E. Batchman, R. F. Carson, R. L. Galawa, H. J. Wojtunik, eds., Proc. SPIE836, 359–363 (1987). [CrossRef]
  9. M. Usui, S. Imamura, S. Sugawara, S. Hayashida, H. Sato, M. Hikita, T. Izawa, “Low-loss polymeric optical waveguides with high thermal stability,” Electron. Lett. 30, 958–959 (1994). [CrossRef]
  10. J. M. Hagerhorst-Trewhella, J. D. Gelorme, B. Fan, A. Speth, D. Flagello, M. M. Optysko, “Polymeric optical waveguides,” in Integrated Optics and Optoelectronics, K. K. Wong, H. J. Wojtunik, S. T. Peng, M. A. Mentzer, L. McCaughan, eds., Proc. SPIE1177, 379–386 (1989). [CrossRef]
  11. C. Xu, R. A. Norwood, L. Eldada, K. M. T. Stengel, L. W. Shacklette, C. Wu, J. T. Yardley, “Robust polymeric materials for optical waveguiding devices,” Proc. Am. Chem. Soc. 75, 364–365 (1996).
  12. R. Moosburger, G. Fischbeck, C. Kostrzewa, B. Schüppert, K. Petermann, “Novel waveguide structuring concept for polarization-independent single-mode polymer integrated optical devices,” Proc. Am. Chem. Soc. 75, 373–374 (1996).
  13. T. Kaino, Y. Katayama, “Polymers for optoelectronics,” Polym. Eng. Sci. 29, 1209–1214 (1989). [CrossRef]
  14. C. T. Sullivan, “Optical waveguide circuits for printed wire-board interconnections,” in Optoelectronic Materials, Devices, Packaging, and Interconnects II, G. M. McWright, H. J. Wojtunik, eds., Proc. SPIE994, 92–100 (1988). [CrossRef]
  15. R. Reuter, H. Franke, C. Feger, “Evaluating polyimides as lightguide materials,” Appl. Opt. 27, 4565–4571 (1988). [CrossRef] [PubMed]
  16. T. Matsuura, N. Yamada, S. Nishi, Y. Hasuda, “Polyimides derived from 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl. 3. Property control for polymer blends and copolymerization of fluorinated polyimides,” Macromolecules 26, 419–423 (1993). [CrossRef]
  17. T. Matsuura, S. Ando, S. Sasaki, F. Yamamoto, “Polyimides derived from 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl. 4. Optical properties of fluorinated polyimides for optoelectronic components,” Macromolecules 27, 6665–6670 (1994). [CrossRef]
  18. T. Matsuura, S. Ando, S. Sasaki, F. Yamamoto, “Low loss, heat resistant optical waveguides using new fluorinated polyimides,” Electron. Lett. 29, 269–270 (1993). [CrossRef]
  19. T. Matsuura, Y. Hasuda, S. Nishi, N. Yamada, “Polyimides derived from 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl. 1. Synthesis and characterization of polyimides prepared with 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride or pyromellitic dianhydride,” Macromolecules 24, 5001–5005 (1991). [CrossRef]
  20. H. Takahara, S. Koike, S. Yamaguchi, H. Tomimuro, “Optical waveguide interconnections for opto-electronic multichip module,” in Optoelectronic Interconnects, R. T. Chen, ed., Proc. SPIE1849, 70–78 (1993). [CrossRef]
  21. T. Matsuura, S. Ando, T. Maruno, S. Sasaki, “Flexible and heat-resistant film waveguides of fluorinated polyimides,” in Technical Digest of the Pacific Rim Conference on Lasers and Electro-Optics (IEEE, New York, 1995), pp. 197–198. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited