OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 6 — Feb. 20, 1998
  • pp: 1089–1098

Fluorescence Lidar Monitoring of Historic Buildings

Valentina Raimondi, Giovanna Cecchi, Luca Pantani, and Roberto Chiari  »View Author Affiliations


Applied Optics, Vol. 37, Issue 6, pp. 1089-1098 (1998)
http://dx.doi.org/10.1364/AO.37.001089


View Full Text Article

Acrobat PDF (368 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser-induced fluorescence spectra detected with high-spectral-resolution lidar on the facades of the Baptistery and the Cathedral in Parma are presented and discussed. The data show fluorescence features that are due to the stone materials that constitute the coating of the monuments and to photosynthetically active colonizations on their surfaces. This underlines the feasibility of a remote fluorescence analysis of historic facades. The data were also compared with the fluorescence lidar spectra obtained from similar lithotypes, sampled either in historic extraction areas or in sites exploited recently. The results open good prospects for spectral characterization of historic materials and identification of their provenance.

© 1998 Optical Society of America

OCIS Codes
(280.3640) Remote sensing and sensors : Lidar
(300.2530) Spectroscopy : Fluorescence, laser-induced

Citation
Valentina Raimondi, Giovanna Cecchi, Luca Pantani, and Roberto Chiari, "Fluorescence Lidar Monitoring of Historic Buildings," Appl. Opt. 37, 1089-1098 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-6-1089


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. Matteini and A. Moles, Scienza e restauro: metodi d’indagine (Nardini Editore, Firenze, 1984).
  2. L. M. Coyne, S. W. S. McKeever, and D. F. Blake, “Spectroscopic characterization of minerals and their surfaces,” in Vol. 415 of the American Chemical Society ACS Symposium Series (American Chemical Society, Washington, D.C., 1990), p. 490.
  3. M. Bacci, “Fibre optics applications to works of art,” Sensors Actuators B 29, 190–196 (1995).
  4. L. Burgio, D. A. Ciomartan, and R. Clark, “Raman microscopy study of the pigments on three illuminated Mediaeval Latin manuscripts,” J. Raman Spectrosc. 28, 79–83 (1997).
  5. M. Fondelli, “Porta del Paradiso: il rilevamento fotogrammetrico,” in Metodo e scienza—Operatività e ricerca nel restauro (Sansoni Editore, Firenze, 1982), pp. 184–185.
  6. I. Scollar, A. Tabbagh, A. Hesse, and I. Herzog, Archeological Prospecting and Remote Sensing (Cambridge U. Press, Cambridge, U.K., 1990).
  7. C. M. Pieters and P. A. Englert, Remote Geochemical Analysis: Elemental and Mineralogical Composition (Cambridge U. Press, Cambridge, U.K., 1990).
  8. H. G. M. Edwards and M. R. D. Seaward, “Raman spectroscopy and lichen biodeterioration,” in Spectrosc. Eur. 5, 16–20 (1993).
  9. R. D. Neuser, “A new high-intensity cathodoluminescence microscope and its application to weakly luminishing minerals,” Bochum. Geol. Geotech. Arb. 44, 116–118 (1995).
  10. V. Bambin, K. Ramseyer, D. Decrovez, S. J. Burns, J. Chamay, and J. L. Maier, “Cathodoluminescence of white limestones: an overview,” Archaeometry 34, 175–183 (1992).
  11. J. M. Van Der Molen, J. Garty, B. W. Aardema, and W. E. Krumbein, “Growth control of algae and cyanobacteria on historic monuments by a mobile UV unit (MUVU),” Stud. Conserv. 25, 71–77 (1980).
  12. R. Chiari, M. Picollo, S. Porcinai, B. Radicati, and A. Orlando, “Non-destructive reflectance spectroscopy of two authigenic minerals: gypsum and wedellite” in Proceedings of the Second International Symposium on the Oxalate Films in the Conservation of Works of Art, M. Realini and L. Toniolo, eds. (EDITEAM s.a.s., Bologna, 1996), pp. 378–389.
  13. E. Becquerel, “Recherches sur divers effets lumineux qui resultent de l’action de la lumiere sur les corps. Composition de la lumiere emise (troisiemme memoire),” Ann. Chim. Phys. 3, 40–128 (1859).
  14. H. Gies, “Activation possibilities and geochemical correlation of photoluminescing carbonates, particularly calcites,” Miner. Deposita 10, 216–227 (1975).
  15. T. Ugumori, and M. Ikeya, “Luminescence of CaCO3 under N2 laser excitation and application to archaelogical dating,” Jpn. J. Appl. Phys. 19, 459–465 (1980).
  16. V. A. Pedone, K. R. Cercone, and R. C. Burruss, “Activators of photoluminescence in calcite: evidence from high-resolution, laser-excited luminescence spectroscopy,” Chem. Geology 88, 183–190 (1991).
  17. ** J. P. deNeufville, A. Kasdan, and R. J. L. Chimenti, “Selective detection of uranium by laser-induced fluorescence: a potential remote-sensing technique. 1: Optical characteristics of uranyl geologic targets,” Appl. Opt. 20, 1279–1296 (1981).
  18. W. L. Medlin, “Trapping centre in thermoluminescence calcite,” Phys. Rev. 135, A1770–A1779 (1964).
  19. H. G. Machel, R. A. Mason, A. N. Mariano, and A. Mucci, “Causes and emissions of luminescence in calcite and dolomite,” in Luminescence Microscopy and Spectroscopy: Qualitative and Quantitative Applications C. E. Barker and O. C. Kopp, eds., (SEPM, Tulsa, 1991), pp. 9–25.
  20. A. N. Mariano and P. J. Ring, “Europium-activated cathodoluminescence in minerals,” Geochim. Cosmochim. Acta 39, 649–660 (1975).
  21. G. Walker, “Mineralogical applications of luminescence techniques,” in Chemical bonding and Spectroscopy, Mineral Chemistry Series, F. J. Berry and D. J. Vaughan, eds. (Chapman & Hall, New York, 1985), pp. 103–140.
  22. R. A. Mason, “Ion microprobe analysis of trace elements in calcite with an application to the cathodoluminescence zonation of limestone cements from the Lower Carboniferous of South Wales, UK,” Chem. Geol. 64, 209–224 (1987).
  23. T. Calderon, M. Aguilar, F. Jaque, and R. Coy-Yll, “Thermoluminescence from natural calcites,” J. Phys. 17, 2027–2038 (1984).
  24. F. J. Berry and D. J. Vaughan, Chemical Bonding and Spectroscopy in Mineral Chemistry (Chapman & Hall, New York, 1985).
  25. C. S. Yentsch and D. W. Menzel, “A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence,” Deep-Sea Res. 10, 221–231 (1963).
  26. W. E. Chapelle, F. M. Wood, III, J. E. McMutrey, and W. W. Newcomb, “Laser-induced fluorescence of green plants. 1: A technique for the remote detection of plant stress and species differentiation,” Appl. Opt. 23, 134–142 (1984).
  27. H. K. Lichtenthaler and U. Rinderle, “The role of chlorophyll fluorescence in the detection of stress conditions in plants,” in CRC Critical Reviews in Analytical Chemistry (CRC Press, Boca Raton, Fla., 1988), Vol. 19, Suppl. 1, pp. S29–S85.
  28. J. F. H. Snel and O. van Kooten, “The use of chlorophyll fluorescence and other noninvasive spectroscopic techniques in plant stress physiology,” Photosynth. Res. 25, 146–332 (1990).
  29. R. Valentini, G. Cecchi, P. Mazzinghi, G. Scarascia Mugnozza, G. Agati, M. Bazzani, P. De Angelis, F. Fusi, G. Matteucci, and V. Raimondi, “Remote sensing of chlorophyll fluorescence on vegetation canopies: 2. physiological significance of fluorescence signal in response to environmental stresses,” Remote Sensing Environ. 47, 29–35 (1994).
  30. A. M. Chekalyuk and M. Yu. Gorbunov, “Development of the lidar pump-and-probe technique for remote measuring the efficiency of primary photochemical reactions in leaves of green plants,” EARSeL Adv. Remote Sensing 3(3), 42–56 (1995).
  31. H. K. Lichtenthaler, F. T. Stober, and M. Lang, “The Nature of the different laser-induced fluorescence signatures of plants,” EARSeL Adv. Remote Sensing 1(2), 20–32 (1992).
  32. R. M. Measures, Laser remote sensing (Wiley Interscience, New York, 1984).
  33. F. E. Hoge, “Oceanic and terrestrial lidar measurements,” in Laser Remote Chemical Analysis, R. M. Measures, ed. (Wiley, New York, 1988), pp. 409–503.
  34. G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, and P. De Angelis, “Remote sensing of chlorophyll a fluorescence on vegetation canopies: 1. Near and far field measurement techniques,” Remote Sensing Environ. 47, 18–28 (1994).
  35. H. Edner, J. Johansson, S. Svanberg, and E. Wallinder, “Fluorescence lidar multicolor imaging of vegetation,” Appl. Opt. 33, 2471–2479 (1994).
  36. F. E. Hoge and R. N. Swift, “Application of the NASA Airborne Oceanographic Lidar to the Mapping of Chlorophyll and Other Pigments,” in Chesapeake Bay Plume Study J. W. Campbell and J. P. Thomas, eds., NASA Conf. Pub. Vol. 2188, Washington, D.C., 1981, pp. 349–374.
  37. R. M. Measures, Laser Remote Chemical Analysis (Wiley, New York, 1988).
  38. F. Castagnoli, G. Cecchi, L. Pantani, I. Pippi, B. Radicati, and P. Mazzinghi, “Fluorescence lidar for land and sea remote sensing,” in Laser Radar Technology and Applications, J. M. Cruickshank and R. C. Harney, eds. Proc. SPIE 663, 212–216 (1986).
  39. G. Cecchi, M. Bazzani, V. Raimondi, and L. Pantani, “Fluorescence lidar in vegetation remote sensing: system features and multiplatform operation,” in Proceedings of the International Geoscience and Remote Sensing Symposium (IEEE, Piscataway, N.J., 1994), pp. 637–639.
  40. G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, and R. Chiari, “Fluorescence lidar technique for the remote sensing of stony materials in ancient buildings,” in Remote Sensing for Geography, Geology, Land Planning and Cultural Heritage, D. Arroyo-Bishop, R. Carlà, J. B. Lurie, C. M. Marino, A. Panunzi, J. J. Pearson, and E. Zilioli, eds., Proc. SPIE 2960, 163–172 (1996).
  41. Salimbene De Adams, Chronica, F. Bernini, ed. (Laterza, Bari, 1942), Vol. II, p. 352. (1983).
  42. G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, L. Tomaselli, G. Lamenti, M. Bosco, and P. Tiano, “Fluorescence lidar technique for the monitoring of biodeteriogens on the cultural heritage,” in Remote Sensing for Geography, Geology, Land Planning and Cultural Heritage, D. Arroyo-Bishop, R. Carlà, J. B. Lurie, C. M. Marino, A. Panunzi, J. J. Pearson, and E. Zilioli, eds., Proc. SPIE 2960, 137–147 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited