OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 6 — Feb. 20, 1998
  • pp: 1104–1109

Asymmetry parameter and aggregate particles

Gorden Videen, Ronald G. Pinnick, Dat Ngo, Qiang Fu, and Petr Chýlek  »View Author Affiliations


Applied Optics, Vol. 37, Issue 6, pp. 1104-1109 (1998)
http://dx.doi.org/10.1364/AO.37.001104


View Full Text Article

Enhanced HTML    Acrobat PDF (195 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We derive and examine the general expression for the scattering asymmetry parameter g. For aggregate particles, the asymmetry parameter is made up of two terms. One term accounts for interference effects of the electromagnetic fields radiating from the individual subsystems. The other term contains the effects of the interaction of the electromagnetic fields between these subsystems. Enhanced backscatter is one phenomenon resulting from these interactions. Numerical results demonstrate that interference effects play a dominant role when the separation distance between two-sphere aggregates is smaller than half the incident wavelength. As the separation distance becomes large, both interference and interaction effects drop off and the asymmetry parameter approaches that of the individual particle constituents.

© 1998 Optical Society of America

OCIS Codes
(290.0290) Scattering : Scattering
(350.4990) Other areas of optics : Particles

History
Original Manuscript: March 17, 1997
Revised Manuscript: October 10, 1997
Published: February 20, 1998

Citation
Gorden Videen, Ronald G. Pinnick, Dat Ngo, Qiang Fu, and Petr Chýlek, "Asymmetry parameter and aggregate particles," Appl. Opt. 37, 1104-1109 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-6-1104


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Debye, “Der Lichtdruck auf Kugeln von beliebigem Material,” Ann. Phys. 30, 57–136 (1909). [CrossRef]
  2. K.-N. Liou, Introduction to Atmospheric Radiation (Academic, San Diego, Calif., 1980).
  3. Y. Takano, K.-N. Liou, “Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 45, 3–19 (1989). [CrossRef]
  4. G. L. Stephens, S. C. Tsay, P. W. Stackhouse, P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback,” J. Atmos. Sci. 47, 1742–1753 (1990). [CrossRef]
  5. Q. Fu, “An accurate parameterization of the solar radiative properties of cirrus clouds for climate models,” J. Climate 9, 2058–2082 (1996). [CrossRef]
  6. K.-N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986). [CrossRef]
  7. P. N. Francis, A. Jones, R. W. Saunders, K. P. Shine, A. Slingo, Z. Sun, “An observational and theoretical study of the radiative properties of cirrus: some results from ICE’89,” Q. J. R. Meteorol. Soc. 120, 809–848 (1994). [CrossRef]
  8. S. A. Ackerman, G. L. Stephens, “The absorption of solar radiation by cloud droplets: an application of anomalous diffraction theory,” J. Atmos. Sci. 44, 1574–1588 (1987). [CrossRef]
  9. B. T. N. Evans, G. R. Fournier, “Approximations of polydispersed extinction,” Appl. Opt. 35, 3281–3285 (1996). [CrossRef] [PubMed]
  10. P. Chýlek, J. D. Klett, “Extinction cross sections of nonspherical particles in the anomalous diffraction approximation,” J. Opt. Soc. Am. A 8, 274–281 (1991). [CrossRef]
  11. P. Chýlek, J. D. Klett, “Absorption and scattering of electromagnetic radiation by prismatic columns: anomalous diffraction approximation,” J. Opt. Soc. Am. A 8, 1713–1720 (1991). [CrossRef]
  12. P. Chýlek, G. Videen, “Longwave radiative properties of polydispersed hexagonal ice crystals,” J. Atmos. Sci. 51, 175–190 (1994). [CrossRef]
  13. C. Liang, Y. T. Lo, “Scattering by two spheres,” Radio Sci. 2, 1481–1495 (1967).
  14. J. H. Bruning, Y. T. Lo, “Multiple scattering of EM waves by spheres parts I and II,” IEEE Trans. Antennas Propag. AP-19, 378–400 (1971). [CrossRef]
  15. A. R. Jones, “Electromagnetic wave scattering by assemblies of particles in the Rayleigh approximation,” Proc. R. Soc. London Ser. A 366, 111–127 (1979). [CrossRef]
  16. J. M. Gérardy, M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations: the long wavelength limit,” Phys. Rev. B 22, 4950–4959 (1980). [CrossRef]
  17. F. Borghese, P. Denti, R. Saija, G. Toscano, O. I. Sindoni, “Multiple electromagnetic scattering from a cluster of spheres. I. Theory,” Aerosol Sci. Technol. 3, 227–235 (1984). [CrossRef]
  18. K. A. Fuller, G. W. Kattawar, “Consummate solution to the problem of classical electromagnetic scattering by an ensemble of spheres. I: Clusters of arbitrary configuration,” Opt. Lett. 13, 1063–1065 (1988). [CrossRef] [PubMed]
  19. M. F. Iskander, H. Y. Chen, J. E. Penner, “Optical scattering and absorption by branched chains of aerosols,” Appl. Opt. 28, 3083–3091 (1989). [CrossRef] [PubMed]
  20. D. W. Mackowski, “Analysis of radiative scattering for multiple sphere configurations,” Proc. R. Soc. London Ser. A 433, 599–614 (1991). [CrossRef]
  21. M. I. Mishchenko, “Light scattering by randomly oriented axially symmetric particles,” J. Opt. Soc. Am. A 8, 871–882 (1991). [CrossRef]
  22. J. C. Ku, K.-H. Shim, “A comparison of solutions for light scattering and absorption by agglomerated or arbitrarily-shaped particles,” J. Quant. Spectrosc. Radiat. Transfer 47, 201–220 (1992). [CrossRef]
  23. M. I. Mishchenko, D. W. Mackowski, “Light scattering by randomly oriented bispheres,” Opt. Lett. 19, 1604–1606 (1994). [CrossRef] [PubMed]
  24. D. W. Mackowski, “Calculation of total cross sections of multiple-sphere clusters,” J. Opt. Soc. Am. A 11, 2851–2861 (1994). [CrossRef]
  25. K. A. Fuller, “Scattering and absorption cross sections of compounded spheres. I. Theory for external aggregation,” J. Opt. Soc. Am. A 11, 3251–3260 (1994). [CrossRef]
  26. K. A. Fuller, “Scattering and absorption cross sections of compounded spheres. II. Calculations for external aggregation,” J. Opt. Soc. Am. A 12, 881–892 (1995). [CrossRef]
  27. S. C. Hill, H. I. Saleheen, K. A. Fuller, “Volume current method for modeling light scattering by inhomogeneously perturbed spheres,” J. Opt. Soc. Am. A 12, 905–915 (1995). [CrossRef]
  28. G. Videen, D. Ngo, M. B. Hart, “Light scattering from a pair of conducting, osculating spheres,” Opt. Commun. 125, 275–287 (1996). [CrossRef]
  29. J. G. Fikioris, N. K. Uzunoglu, “Scattering from an eccentrically stratified dielectric sphere,” J. Opt. Soc. Am. 69, 1359–1366 (1979). [CrossRef]
  30. F. Borghese, P. Denti, R. Saija, “Optical properties of spheres containing a spherical eccentric inclusion,” J. Opt. Soc. Am. A 9, 1327–1335 (1992). [CrossRef]
  31. F. Borghese, P. Denti, R. Saija, “Optical properties of spheres containing several spherical inclusions,” Appl. Opt. 33, 484–493 (1994). [CrossRef] [PubMed]
  32. K. A. Fuller, “Scattering and absorption cross sections of compounded spheres. III. Spheres containing arbitrarily located spherical inhomogeneities,” J. Opt. Soc. Am. A 12, 893–904 (1995). [CrossRef]
  33. M. M. Mazumder, S. C. Hill, P. W. Barber, “Morphology-dependent resonances in inhomogeneous spheres: comparison of the layered T-matrix method and the time-independent perturbation method,” J. Opt. Soc. Am. A 9, 1844–1853 (1992). [CrossRef]
  34. N. C. Skaropoulos, M. P. Ioannidow, D. P. Chrissoulidis, “Indirect mode-matching solution to scattering from a dielectric sphere with an eccentric inclusion,” J. Opt. Soc. Am. A 11, 1859–1866 (1994). [CrossRef]
  35. G. Videen, D. Ngo, P. Chýlek, “Effective-medium predictions of absorption by graphitic carbon in water droplets,” Opt. Lett. 19, 1675–1677 (1994). [CrossRef] [PubMed]
  36. G. Videen, D. Ngo, P. Chýlek, R. G. Pinnick, “Light scattering from a sphere with an irregular inclusion,” J. Opt. Soc. Am. A 12, 922–928 (1995). [CrossRef]
  37. S. Stein, “Addition theorems for spherical wave functions,” Q. Appl. Math. 19, 15–24 (1961).
  38. A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton U. Press, Princeton, N.J., 1957).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited