OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 6 — Feb. 20, 1998
  • pp: 978–997

Retrieval of the Columnar Aerosol Phase Function and Single-Scattering Albedo from Sky Radiance over Land: Simulations

Haoyu Yang and Howard R. Gordon  »View Author Affiliations


Applied Optics, Vol. 37, Issue 6, pp. 978-997 (1998)
http://dx.doi.org/10.1364/AO.37.000978


View Full Text Article

Acrobat PDF (694 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a retrieval scheme that can be used to derive the aerosol phase function and single-scattering albedo from the sky radiance over land. The retrieval algorithm iteratively corrects the aerosol volume scattering function, the product of the single-scattering albedo and the phase function, based on the difference between the measured sky radiance and the radiance calculated by solving the radiative transfer equation. It is tested first under ideal conditions, i.e., the approximations made in the retrieval algorithm totally agree with actual conditions assumed in creating the pseudodata for sky radiance. It is then tested under more realistic conditions to assess its susceptibility to measurement errors and effects of conditions not recognized in the retrieval algorithm, e.g., surface horizontal inhomogeneity, departures of the surface from Lambertian, and aerosol horizontal inhomogeneity. These simulations show that, in most cases, this scheme can retrieve the aerosol single-scattering albedo with high accuracy (within 1%) and can therefore be used to identify strongly absorbing aerosols. It can also produce meaningful retrievals of most aerosol phase functions: less than 5% error at 865 nm and less than 10% at 443 nm in most cases. Typically, the error in the volume scattering function is small for scattering angles ≲90°, then increases for larger angles. Disappointing results in both the single-scattering albedo and the scattering phase function occur at 443 nm, either when there are large calibration errors in the radiometer used to measure the sky radiance or when the land reflection properties are significantly inhomogeneous.

© 1998 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(030.5620) Coherence and statistical optics : Radiative transfer
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(290.0290) Scattering : Scattering

Citation
Haoyu Yang and Howard R. Gordon, "Retrieval of the Columnar Aerosol Phase Function and Single-Scattering Albedo from Sky Radiance over Land: Simulations," Appl. Opt. 37, 978-997 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-6-978


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. J. Charlson, J. E. Lovelock, M. O. Andreae, and S. G. Warren, “Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate,” Nature (London) 326, 655–661 (1987).
  2. R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, and D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992).
  3. Y. J. Kaufman, “Remote sensing of direct and indirect aerosol forcing,” in Aerosol Forcing of Climate, R. H. Charlson and J. Heintzenberg, eds. (Wiley, New York, 1995), pp. 297–332.
  4. V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS: advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Remote Sensing 27, 145–152 (1989).
  5. D. J. Diner, C. J. Bruegge, J. V. Martonchik, T. P. Ackerman, R. Davies, S. A. W. Gerstl, H. R. Gordon, P. J. Sellers, J. Clark, J. A. Daniels, E. D. Danielson, V. G. Duval, K. P. Klaasen, G. W. L. A. D. I. Nakamoto, R. Pagano, and T. H. Reilly, “MISR: a multi-angle imaging spectroradiometer for geophysical and climatological research from EOS,” IEEE Trans. Geosci. Remote Sensing 27, 200–214 (1989).
  6. P. Y. Deschamps, F. M. Bréon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, and G. Sèze, “The POLDER mission: instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Remote Sensing 32, 598–615 (1994).
  7. M. Wang and H. R. Gordon, “Estimating aerosol optical properties over the oceans with the multiangle imaging spectroradiometer: some preliminary studies,” Appl. Opt. 33, 4042–4057 (1994).
  8. M. Wang and H. R. Gordon, “Estimation of aerosol columnar size distribution and optical thickness from the angular distribution of radiance exiting the atmosphere: simulations,” Appl. Opt. 34, 6989–7001 (1995).
  9. W. A. Hoppel, J. W. Fitzgerald, G. M. Frick, R. E. Larson, and E. J. Mack, “Aerosol size distributions and optical properties found in the marine boundary layer over the Atlantic Ocean,” J. Geophys. Res. 95D, 3659–3686 (1990).
  10. E. P. Shettle and R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” AFGL-TR-79–0214 (Air Force Geophysics Laboratory, Hanscomb Air Force Base, Mass., 1979).
  11. G. A. d’Almeida, P. Koepke, and E. P. Shettle, Atmospheric Aerosols—Global Climatology and Radiative Characteristics (A. Deepak, Hampton, Va., 1991).
  12. H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994).
  13. H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth observing system era,” J. Geophys. Res. 102D, 17081–17106 (1997).
  14. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, and F. Lavenu, “Multi-band automatic Sun and sky scanning radiometer system for measurement of aerosols,” presented at the Sixth International Symposium on Physical Measurements and Signatures in Remote Sensing, Val-d’Isère, France, 17–21 January 1994.
  15. T. Nakajima, M. Tanaka, and T. Yamauchi, “Retrieval of the optical properties of aerosols from aureole and extinction data,” Appl. Opt. 22, 2951–2959 (1983).
  16. T. Nakajima, G. Tonna, R. Rao, P. Boi, Y. Kaufman, and B. Holben, “Use of sky brightness measurements from ground for remote sensing of particulate polydispersions,” Appl. Opt. 35, 2672–2686 (1996).
  17. Y. J. Kaufman, A. Gitelson, A. Karnieli, E. Ganor, R. S. Eraser, T. Nakajima, S. Mattoo, and B. N. Holben, “Size distribution and scattering phase functions of aerosol particles retrieved from sky brightness measurements,” J. Geophys. Res. 99D, 10341–10356 (1994).
  18. M. I. Mishchenko and L. D. Travis, “Light scattering by polydispersions of randomly oriented spheriods with sizes comparable to wavelengths of observation,” Appl. Opt. 33, 7206–7225 (1994).
  19. M. Wang and H. R. Gordon, “Retrieval of the columnar aerosol phase function and single scattering albedo from sky radiance over the ocean: simulations,” Appl. Opt. 32, 4598–4609 (1993).
  20. H. R. Gordon and T. Zhang, “How well can radiance reflected from the ocean–atmosphere system be predicted from measurements at the sea surface?,” Appl. Opt. 35, 6527–6543 (1996).
  21. H. R. Gordon and T. Zhang, “Columnar aerosol properties over oceans by combining surface and aircraft measurements: simulations,” Appl. Opt. 34, 5552–5555 (1995).
  22. T. Zhang and H. R. Gordon, “Columnar aerosol properties over oceans by combining surface and aircraft measurements: sensitivity analysis,” Appl. Opt. 36, 2650–2662 (1997).
  23. T. Zhang and H. R. Gordon, “Passive remote sensing of elements of the aerosol scattering matrix: simulations,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 158–160.
  24. T. Zhang and H. R. Gordon, “Retrieval of elements of the columnar aerosol scattering phase matrix from polarized sky radiance over the ocean: simulations,” Appl. Opt. 36, 7948–7959 (1997).
  25. M. Wendisch and W. von Hoyningen-Huene, “High speed version of the method of ’successive order of scattering‘ and its application to remote sensing,” Beitr. Phys. Atmos. 64, 83–91 (1991).
  26. N. J. McCormick, “Inverse radiative transfer problems: a review,” Nucl. Sci. Eng. 112, 185–198 (1992).
  27. T. Nakajima and M. Tanaka, “Effect of wind-generated waves on the transfer of solar radiation in the atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transfer 29, 521–537 (1983).
  28. C. Cox and W. Munk, “Measurements of the roughness of the sea surface from photographs of the Sun’s glitter,” J. Opt. Soc. Am. 44, 838–850 (1954).
  29. H. R. Gordon and M. Wang, “Influence of oceanic whitecaps on atmospheric correction of SeaWiFS,” Appl. Opt. 33, 7754–7763 (1994).
  30. J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
  31. F. X. Kenizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, and R. W. Fenn, “Atmospheric Transmittance/Radiance: The LOWTRAN 6 Model,” AFGL-TR-83–0187 (Air Force Geophysics Laboratory, Hanscomb Air Force Base, Mass., 1983).
  32. K. P. Bowman and A. J. Krueger, “A global climatology of total ozone from the nimbus 7 total ozone mapping spectrometer,” J. Geophys. Res. 90D, 7967–7976 (1985).
  33. M. D. King and D. M. Byrne, “A method for inferring total ozone content from the spectral variation of optical depth obtained with a solar radiometer,” J. Atmos. Sci. 35, 2242–2251 (1976).
  34. R. W. Preisendorfer and C. D. Mobley, “Direct and inverse irradiance models in hydrologic optics,” Limnol. Oceanogr. 29, 903–929 (1984).
  35. H. R. Gordon and D. J. Castaño, “Aerosol analysis with the coastal zone color scanner: a simple method for including multiple scattering effects,” Appl. Opt. 28, 1320–1326 (1989).
  36. H. C. van de Hulst, Multiple Light Scattering (Academic, New York, 1980).
  37. P. Y. Deschamps, M. Herman, and D. Tanre, “Modeling of the atmospheric effects and its application to the remote sensing of ocean color,” Appl. Opt. 22, 3751–3758 (1983).
  38. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in FORTRAN (Cambridge U. Press, Cambridge, England, 1992).
  39. D. T. Lindgren, “Land use planning and remote sensing,” in Remote Sensing of Earth Resources and Environment (Dordrecht, Boston, Mass., 1985), p. 176.
  40. C. Elachi, Introduction to the Physics and Techniques of Remote Sensing (Wiley, New York, 1987), p. 413.
  41. M. D. King and B. M. Herman, “Determination of the ground albedo and the index of absorption of atmospheric particulates by remote sensing. Part I: Theory,” J. Atmos. Sci. 36, 163–173 (1979).
  42. D. S. Kimes, “Dynamics of directional reflectance factor distributions for vegetation canopies,” Appl. Opt. 22, 1364–1372 (1983).
  43. D. S. Kimes, W. W. Newcomb, and C. J. Tucker, “Directional reflectance factor distributions for cover types of Northern Africa,” Remote Sensing Environ. 18, 1–19 (1985).
  44. J. A. Kirchner, D. S. Kimes, and J. E. McMurtrey, III, “Variation of directional reflectance factors with structural changes of a developing alfalfa canopy,” Appl. Opt. 21, 3766–3774 (1982).
  45. D. S. Kimes, W. W. Newcomb, R. F. Nelson, and J. B. Schutt, “Directional reflectance factor distributions of a hardwood and pine forest canopy,” IEEE Trans. Geosci. Remote Sensing 24, 281–293 (1986).
  46. T. Zhang, “Remote sensing of aerosol properties over the ocean by combining surface and aircraft measurements,” Ph.D. dissertation (University of Miami, Coral Gables, Fla., 1995).
  47. Y. Sasano and E. V. Browell, “Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations,” Appl. Opt. 28, 1670–1679 (1989).
  48. S. F. Biggar, P. N. Slater, and D. I. Gellman, “Uncertainties in the in-flight calibration of sensors with reference to measured ground sites in the 0.4 to 1.1 μm range,” Remote Sensing Environ. 48, 245–252 (1994).
  49. P. N. Slater, S. F. Biggar, K. J. Thome, D. I. Gellman, and P. R. Spyak, “Vicarious radiometric calibration of EOS sensors,” J. Atmos. Oceanic Technol. 13, 349–359 (1996).
  50. K. J. Voss and G. Zibordi, “Radiometric and geometric calibration of a visible spectral electro-optic ‘Fisheye’ camera radiance distribution system,” J. Atmos. Oceanic Technol. 6, 652–662 (1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited