OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 7 — Mar. 1, 1998
  • pp: 1213–1219

Fabrication Technique of a Nonlinear Optical Structure Using Optical Polymeric Films by Direct Electron-beam Irradiation

Hideki Nakayama, Hisashi Fujimura, Chikara Egami, Okihiro Sugihara, Ryoka Matsushima, and Naomichi Okamoto  »View Author Affiliations


Applied Optics, Vol. 37, Issue 7, pp. 1213-1219 (1998)
http://dx.doi.org/10.1364/AO.37.001213


View Full Text Article

Acrobat PDF (221 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A simple fabrication technique of nonlinear optical structures for use with dye-doped polymer is described. Polymethylmethacrylate, U-100 polymer, and polystyrene were used as the host matrices to fabricate the nonlinear optical waveguide. The periodically poled nonlinear optical polymer structures and ridge-type channel structures were fabricated by direct electron-beam irradiation. The electron beam with 25 kV of energy was exposed directly onto the polymer films containing the nonlinear optical chromophores. We can also demonstrate the fabrication technique of the domain-inverted grating of dye-doped polystyrene film.

© 1998 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(190.0190) Nonlinear optics : Nonlinear optics
(190.2620) Nonlinear optics : Harmonic generation and mixing

Citation
Hideki Nakayama, Hisashi Fujimura, Chikara Egami, Okihiro Sugihara, Ryoka Matsushima, and Naomichi Okamoto, "Fabrication Technique of a Nonlinear Optical Structure Using Optical Polymeric Films by Direct Electron-beam Irradiation," Appl. Opt. 37, 1213-1219 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-7-1213


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped grating,” IEEE J. Quantum Electron. 7, 1265–1276 (1990).
  2. K. C. Rustagi, S. C. Mehendale, and S. Meenakshi, “Optical frequency conversion in quasi-phase-matched stacks of nonlinear crystals,” IEEE J. Quantum Electron. 6, 1029–1041 (1982).
  3. S. Tomaru, T. Watanabe, M. Hikita, M. Amano, Y. Shuto, I. Yokohoma, T. Kaino, and M. Asobe, “Quasi-phase-matched second harmonic generation in a polymer waveguide with a periodic poled structure,” Appl. Phys. Lett. 68, 1760–1762 (1996).
  4. G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, and D. Karim, “Phase-matched second-harmonic generation in a polymer waveguide,” Appl. Phys. Lett. 57, 977–979 (1990).
  5. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
  6. M. J. Rooks, H. V. Roussell, and L. M. Johnson, “Polyimide optical waveguides fabricated with electron-beam lithography,” Appl. Opt. 29, 3880–3882 (1990).
  7. B. L. Booth, “Low loss channel waveguides in polymers,” J. Lightwave Technol. 7, 1445–1453 (1989).
  8. S. Imamura, R. Yoshimura, and T. Izawa, “Polymer channel waveguides with low loss at 1.3 μm,” Electron. Lett. 27, 1342–1343 (1991).
  9. S. Imamura, “Chloromethylated polystyrene as a dry etching-resistant negative resist for submicron technology,” J. Electrochem. Soc. 9, 1628–1630 (1979).
  10. J. H. Lai and L. T. Shepherd, “Experimental observations of nearly monodisperse polystyrene as negative electron resists,” J. Electrochem. Soc. 4, 696–698 (1979).
  11. L. A. Pederson, “Structural composition of polymers relative to their plasma etch characteristics,” J. Electrochem. Soc. 1, 205–208 (1982).
  12. H. Gokan, S. Esho, and Y. Ohnishi, “Dry etch resistance of organic materials,” J. Electrochem. Soc. 1, 143–146 (1983).
  13. S. Imamura and S. Sugawara, “Chloromethylated polystyrene as deep UV and X-ray resist,” Jpn. J. Appl. Phys. 21, 776–782 (1982).
  14. R. Reuter, H. Franke, and C. Feger, “Evaluating polyimides as lightguide materials,” Appl. Opt. 27, 4565–4571 (1988).
  15. T. Matsuura, N. Yamada, S. Nishi, and Y. Hasuda, “Polyimide derived from 2,2′-bis(trifluoromethyl)-4,4′-diaminobiohenyl. 3,” Macromolecules 26, 419–423 (1993).
  16. Y. Y. Maruo, S. Sasaki, and T. Tamamura, “Embedded channel polyimide waveguide fabrication by direct electron beam writing method,” J. Lightwave. Technol. 13, 1718–1723 (1995).
  17. Y. Y. Maruo, S. Sasaki, and T. Tamamura, “Channel-optical-waveguide fabrication based on electron-beam irradiation of polyimides,” Appl. Opt. 34, 1047–1052 (1995).
  18. M. Jager, G. I. Stegeman, W. Brinker, S. Yilmaz, S. Bauer, W. H. G. Horsthuis, and G. R. Mohlmann, “Comparison of quasi-phase-matching geometries for second-harmonic generation in poled polymer channel waveguide at 1.5 μm,” Appl. Phys. Lett. 68, 1183–1185 (1996).
  19. G. M. Yang, S. Bauer-Gogonea, G. M. Sessier, S. Bauer, W. Ren, W. Wirges, and R. Gerhard-Multhaupt, “Selective poling of nonlinear optical polymer films by means of a monoenergetic electron beam,” Appl. Phys. Lett. 64, 22–24 (1994).
  20. P. G. Kazansky, A. Kamal, and P. St. J. Russell, “High second-order nonlinearities induced in lead silicate glass by electron-beam irradiation,” Opt. Lett. 18, 693–695 (1993).
  21. S. Yilmaz, S. Bauer, W. Wirges, and R. Gerhard-Multhaupt, “Scanning electro-optical and pyroelectrical microscopy for the investigation of polarization patterns in poled polymers,” Appl. Phys. Lett. 63, 1724–1726 (1993).
  22. S. Kurimura, I. Shimoya, and Y. Uesu, “Domain inversion by an electron-beam-induced electric field in MgO:LiNbO3, LiNbO3, and LiTaO3,” Jpn. J. Appl. Phys. 35, L31–L33 (1996).
  23. O. Sugihara, T. Kinoshita, M. Okabe, S. Kunioka, Y. Nonaka, and K. Sasaki, “Phase-matched second harmonic generation in a poled dye/polymer waveguide,” Appl. Opt. 30, 2957–2960 (1991).
  24. M. Ozawa, H. Nakayama, O. Sugihara, N. Okamoto, and K. Hirota, “Guest–host polymer films for stable and large second-order nonlinearity,” Nonlinear Opt. 15, 171–174 (1996).
  25. J. R. Heflin, K. Y. Wong, O. Zamani-Khamiri, and A. F. Garito, “Nonlinear optical properties of linear chains and electron-correlation effects,” Phys. Rev. B 38, 1573–1576 (1988).
  26. G. J. B. Hurst, M. Dupuis, and E. Clementi, “Ab initio analytic polarizability, first and second hyperpolarizabilities of large conjugated organic molecules: applications to polyenes C4H5 to C22H24,” J. Chem. Phys. 89, 385–395 (1988).
  27. H. A. Kurtz, J. J. P. Stewart, and K. M. Dieter, “Calculation of the nonlinear optical properties of molecules,” J. Comput. Chem. 11, 82–87 (1990).
  28. P. G. Kazansky, A. Kamal, and P. St. J. Russell, “Erasure of thermally poled second-order nonlinearity in fused silica by electron implantation,” Opt. Lett. 18, 1141–1143 (1993).
  29. M. Tsuchimori, O. Watanabe, S. Ogata, and A. Okada, “Stable second-order optical nonlinearity of urethane-urea copolymers,” Jpn. J. Appl. Phys. 35, L444–L446 (1996).
  30. G. S’heeren, A. Persoons, H. Bolink, M. Heylen, M. V. Beylen, and C. Samyn, “Polymers containing nonlinear optical groups in the main chain. Second harmonic generation in corona poled thin films,” Eur. Polym. J. 29, 981–986 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited