OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 7 — Mar. 1, 1998
  • pp: 1220–1226

Stable, low-loss optical waveguides and micromirrors fabricated in acrylate polymers

J. P. D. Cook, G. O. Este, F. R. Shepherd, W. D. Westwood, J. Arrington, W. Moyer, J. Nurse, and S. Powell  »View Author Affiliations


Applied Optics, Vol. 37, Issue 7, pp. 1220-1226 (1998)
http://dx.doi.org/10.1364/AO.37.001220


View Full Text Article

Enhanced HTML    Acrobat PDF (171 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Acrylate-based optical waveguides have been fabricated with optical loss of 0.5 dB/cm at 1300 nm by means of a new material system that ensures stable optical and mechanical properties over a wide temperature range. No increase in loss was measured after 500 h at temperatures up to 150 °C, and there was no significant increase in loss during short (<5 min) temperature excursions to 300 °C for bonding. Single-mode waveguides were fabricated with refractive indices for core and clad of 1.505 and 1.500, respectively, so that the mode field is very similar to that of single-mode silica fiber. Guides were fabricated on both planar and structured substrates of Si and GaAs as well as on substrates coated with metals and dielectrics. Fabrication involved spin coating and UV exposure to cross-link the polymer, but the substrate temperature did not exceed 180 °C. With this method guides could be fabricated on a range of substrates up to 125 cm in diameter, including those with multilayer metallization for multichip modules, providing optical interconnect capability. Microprism reflecting surfaces were fabricated in the waveguides to couple light out normal to the substrate. All the processing was compatible with normal semiconductor fabrication.

© 1998 Optical Society of America

OCIS Codes
(160.5470) Materials : Polymers
(230.5480) Optical devices : Prisms
(230.7370) Optical devices : Waveguides

History
Original Manuscript: June 21, 1996
Revised Manuscript: November 22, 1996
Published: March 1, 1998

Citation
J. P. D. Cook, G. O. Este, F. R. Shepherd, W. D. Westwood, J. Arrington, W. Moyer, J. Nurse, and S. Powell, "Stable, low-loss optical waveguides and micromirrors fabricated in acrylate polymers," Appl. Opt. 37, 1220-1226 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-7-1220


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Husain, “Optical interconnect of digital integrated circuits and systems,” in Optical Interfaces for Digital Circuits and Systems, R. A. Milano, ed., Proc. SPIE466, 10–20 (1984). [CrossRef]
  2. H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1985), Chap. 2.
  3. D. H. Hartman, “Digital high speed interconnects: a study of the optical alternative,” Opt. Eng. 25, 1086–1102 (1986). [CrossRef]
  4. P. R. Haugen, S. Rychnovsky, A. Husain, L. D. Hutcheson, “Optical interconnects for high speed computers,” Opt. Eng. 25, 1076–1084 (1986). [CrossRef]
  5. M. K. Kilcoyne, K. D. Pedrott, S. Beccue, W. Haber, “Optical signal interconnection between GaAs integrated circuit chips,” in Integration and Packaging of Optoelectronic Devices, D. H. Hartman, R. L. Holman, D. P. Skinner, eds., Proc. SPIE703, 148–155 (1986). [CrossRef]
  6. D. Z. Tsang, D. L. Smythe, A. Chu, J. J. Lambert, “A technology for optical interconnections based on multichip integration,” in Integration and Packaging of Optoelectronic Devices, D. H. Hartman, R. L. Holman, D. P. Skinner, eds., Proc. SPIE703, 122–127 (1986). [CrossRef]
  7. R. K. Kostuk, J. W. Goodman, L. Hesselink, “Optical Interconnects,” in Non-Linear Photonics, H. M. Gibbs, G. Khitrova, N. Peyghambarian, eds., Vol. 30 in Springer Series in Electronics and Photonics (Springer-Verlag, Berlin, 1990), pp. 61–89. [CrossRef]
  8. T. A. Lane, M. P. Bendett, C. T. Sullivan, J. P. G. Bristow, “Digital system application of optical interconnections,” in Fiber Optic Datacom and Computer Networks, J. Pazaris, J. E. Hayes, eds., Proc. SPIE991, 42–49 (1988). [CrossRef]
  9. C. T. Sullivan, “Optical waveguide circuits for printed wireboard interconnections,” in Optoelectronic Materials, Devices, Packaging, and Interconnects II, G. M. McWright, H. J. Wojtunik, eds., Proc. SPIE994, 92–100 (1988). [CrossRef]
  10. Y. Yamada, M. Yamada, M. Kobayashi, “Guided-wave chip-to-chip optical interconnects,” in Optical Computing and Nonlinear Materials, N. Peyghambrian, ed., Proc. SPIE881, 164–171 (1988). [CrossRef]
  11. G. R. Lalk, P. D. Smith, D. W. Emmets, D. H. Hartman, “Board level high speed photonic interconnections: recent system developments,” in Optical Interconnects in the Computer Environment, J. Pazaris, G. R. Willenbring, eds., Proc. SPIE1178, 123–130 (1989). [CrossRef]
  12. N. Keil, B. Strebel, H. Yao, J. Krauser, “Applications of optical polymer waveguide devices on future optical communication and signal processing,” in Photopolymer Device Physics, Chemistry and Applications II, L. A. Lessard, ed., Proc. SPIE1559, 278–287 (1991). [CrossRef]
  13. G. F. Lipscomb, R. S. Lytel, A. J. Ticknor, T. E. Van Eck, D. G. Girton, S. P. Ermer, J. F. Valley, J. Kenney, E. Binkley, “Organic electro-optical devices for optical interconnection,” in Nonlinear Optical Properties of Organic Materials IV, K. D. Singer, ed., Proc. SPIE1560, 388–399 (1991). [CrossRef]
  14. B. P. Pai, “Guided-wave optics on silicon: physics, technology and status,” Prog. Opt. 32, 3–59 (1993).
  15. J. T. Boyd, C. M. Chuang, C. L. Chen, “Fabrication of optical waveguide taper couplers utilizing SiO2,” Appl. Opt. 18, 506–509 (1979). [CrossRef] [PubMed]
  16. F. S. Hickernell, C. T. Seaton, “Channelized optical waveguides on silicon,” in Integration and Packaging of Optoelectronic Devices, D. H. Hartman, R. L. Holman, D. P. Skinner, eds., Proc. SPIE703, 164–174 (1986). [CrossRef]
  17. S. Valette, J. P. Jadot, P. Gidon, S. Renard, “New integrated optics structure on silicon substrate: application to optical communication and optical interconnects,” in Optical Interconnections, O. D. D. Soares, G. C. Righini, eds., Proc. SPIE862, 20–26 (1987). [CrossRef]
  18. T. Miyashita, S. Sumida, S. Sakaguchi, “Integrated optical devices based on silica waveguide technologies,” in Integrated Optical Circuit Engineering VI, M. A. Mentzer, ed., Proc. SPIE993, 288–294 (1988). [CrossRef]
  19. Y. Yamada, M. Yamata, H. Terui, M. Kobayashi, “Optical interconnects using a silica-based waveguide on a silicon substrate,” Opt. Eng. 28, 1281–1287 (1989). [CrossRef]
  20. M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22, 391–416 (1990). [CrossRef]
  21. Y. Shani, C. H. Henry, R. Kistler, R. F. Kazarinov, K. J. Orlowsky, “Integrated optic adiabatic devices on silicon,” IEEE J. Quantum Electron. 22, 556 (1990).
  22. R. L. Davis, S. H. Lee, “Low-loss waveguides on silicon substrates for photonic circuits,” in Optical Technology for Signal Processing Systems, M. P. Bendett, ed., Proc. SPIE1474, 20–26 (1991). [CrossRef]
  23. M. F. Grant, R. Bellerby, S. Day, G. J. Cannell, M. Nelson, “Self-aligned multiple fibre coupling for silica-on-silicon integrated optics,” in Proceedings of the Ninth Annual European Fibre Optic Communications and Local Area Network Conference, A. Harmer, ed., pp. 269–272 (1991).
  24. M. Okuno, K. Kato, Y. Ohmori, M. Kawachi, T. Matsunaga, “Improved 8 × 8 integrated optical matrix switch using silica-base planar waveguide circuits,” J. Lightwave Technol. 12, 1597–1606 (1994). [CrossRef]
  25. H. Franke, G. Knabke, R. Reuter, “Optical waveguiding in Polyimide II,” in Molecular and Polymeric Optoelectronic Materials, G. Khanarian, ed., Proc. SPIE682, 191–195 (1986). [CrossRef]
  26. H. Franke, J. D. Crow, “Optical waveguiding in polyimide,” in Integrated Optical Circuit Engineering III, R. T. Kersten, ed., Proc. SPIE651, 102–107 (1986). [CrossRef]
  27. D. A. Christensen, “Plasma-etched polymer waveguides for intrachip optical interconnects,” in Optoelectronic Materials, Devices, Packaging, and Interconnects, T. E. Batchman, ed., Proc. SPIE836, 359–363 (1987). [CrossRef]
  28. R. Selvaraj, H. T. Lin, J. F. McDonald, “Integrated optical waveguides in polyimide for wafer scale integration,” J. Lightwave Technol. 6, 1034–1044 (1988). [CrossRef]
  29. J. P. G. Bristow, C. T. Sullivan, A. Guha, J. Ehramijian, A. Husain, “Polymer waveguide-based optical backplane for fine-grained computing,” in Optical Interconnects in the Computer Environment, J. Pazaris, G. R. Willenbring, eds., Proc. SPIE1178, 103–114 (1989). [CrossRef]
  30. C. Feger, R. Reuter, H. Franke, “Factors affecting polyimide lightguide quality,” in Polymers in Information Storage Technology, K. Mittal, ed. (Plenum, New York, 1989), pp. 227–236. [CrossRef]
  31. D. W. Hewak, H. Jerominek, “Channel optical waveguides in polyimides for optical interconnection by laser direct writing and contact printing,” in Photopolymer Device Physics, Chemistry and Applications, R. A. Lessard, ed., Proc. SPIE1213, 86–99 (1990). [CrossRef]
  32. B. L. Booth, “Low loss channel waveguides in polymers,” J. Lightwave Technol. 7, 1445–1453 (1989). [CrossRef]
  33. J. D. Swalen, R. Santo, M. Tacke, J. Fisher, “Properties of polymeric thin films by integrated optical techniques,” IBM J. Res. Dev. 20, 168–175 (1977). [CrossRef]
  34. T. Kurokawa, N. Takato, Y. Katayama, “Polymer optical circuits for multimode optical fiber systems,” Appl. Opt. 19, 3124–3129 (1980). [CrossRef] [PubMed]
  35. K. Miura, I. Sawaki, H. Nakajima, “Low-loss single mode plastic waveguide fabricated by photopolymerization,” in Integrated and Guided Wave Optics, Vol. 88.5 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), p. 58.
  36. P. D. Townsend, G. L. Baker, N. E. Schlotter, C. F. Klausner, S. Etemad, “Waveguiding in spun films of soluble polydiacetylenes,” Appl. Phys. Lett. 53, 1782–1784 (1988). [CrossRef]
  37. S. V. Kapoor, C. D. Panday, J. C. Joshi, A. L. Dawar, K. N. Tripathy, V. L. Gupta, “Fabrication and characterization of polyester and acrylic polyurethane,” Appl. Opt. 28, 37–39 (1989). [CrossRef] [PubMed]
  38. L. A. Hornak, T. W. Weidman, E. W. Kwock, “Polyalkylsilyne photodefined thin-film optical waveguides,” J. Appl. Phys. 67, 2235–2239 (1990). [CrossRef]
  39. K. W. Beesom, K. A. Horn, M. McFarland, J. T. Yardley, “Photochemical laser writing of polymeric optical waveguides,” Appl. Phys. Lett. 58, 1055–1057 (1991).
  40. R. Lytel, G. F. Lipscomb, E. S. Binkley, J. T. Kenney, A. J. Ticknor, “Electro-optic polymer waveguide devices,” in Materials for Nonlinear Optics, ACS Symposium Series 455, S. R. Marder, J. E. Sohn, G. D. Stucky, eds. (American Chemical Society, Washington, D.C., 1991), pp. 103–112. [CrossRef]
  41. A. F. Garito, J. W. Wu, G. F. Lipscomb, R. Lytel, “Non-linear optical polymers: challenges and opportunities in photonics,” Mat. Res. Soc. Symp. Proc. 173, 467–486 (1990). [CrossRef]
  42. R. Lytel, G. F. Lipscomb, E. S. Binkley, J. T. Kenney, A. J. Ticknor, “Electro-optic polymer materials and devices for optical interconnect applications,” in Digital Optical Computing II, R. Arrathoon, ed., Proc. SPIE1215, 253–262 (1990). [CrossRef]
  43. J. M. Hagerhorst-Trewhella, J. D. Gelorme, B. Fan, A. Speth, D. Flagello, M. M. Oprysko, “Polymeric optical waveguides,” in Integrated Optics and Optoelectronics, K. Wong, H. J. Wojtunik, S. Peng, M. A. Mentzer, L. McCaughan, eds., Proc. SPIE1177, 379–386 (1989). [CrossRef]
  44. R. A. LieBerman, “Photoinitiator effectiveness in curing epoxy acrylate coating formulations,” J. Radiat. Curing 8, 13–24 (1981).
  45. G. R. Möhlmann, “Polymeric optochips: splitters, switches and modulators,” Synthetic Metals 67, 77–80 (1994). [CrossRef]
  46. R. T. Chen, “Polymer-based photonic integrated circuits,” Opt. Laser Technol. 25, 347–365 (1993). [CrossRef]
  47. T. Watanabe, M. Amano, M. Hikita, Y. Shuto, S. Tomaru, “Novel ‘serially grafted’ connection between functional and passive polymer waveguides,” Appl. Phys. Lett. 65, 1205–1207 (1994). [CrossRef]
  48. N. Bouadma, J. Liang, R. Levenson, S. Grosmaire, P. Boulet, S. Sainson, “Integration of a laser diode with a polymerbased waveguide for photonic integrated circuits,” IEEE Photon. Technol. Lett. 6, 1188–1190 (1994). [CrossRef]
  49. R. Lytel, G. F. Lipscomb, J. T. Kenney, A. J. Ticknor, “Applications of electro-optic polymers to optical interconnects,” in Optical Enhancements to Computing Technology, J. A. Neff, ed., Proc. SPIE1563, 122–138 (1991). [CrossRef]
  50. S. Ura, R. Ohyama, T. Suhara, H. Nishihara, “Electro-optic functional waveguide using new polymer p-NAn-PVA for integrated photonic devices,” Jpn. J. Appl. Phys. 31, 1378–1381 (1992). [CrossRef]
  51. S. Ando, T. Matsuura, S. Sasaki, “Perfluorinated polymers for optical waveguides,” Chemtech 24(12), 20–27 (1994).
  52. D. S. Walker, K. Balasubramanian, W. M. Reichert, “Low loss DEMA/EMA copolymer waveguides with a range of wetting and optical properties,” J. Appl. Polym. Sci. 49, 2147–2155 (1993). [CrossRef]
  53. Y. Hida, S. Imamura, “Influence of temperature and humidity change on optical waveguide circuits composed of deuterated and fluorinated methacrylate polymers,” Jpn. J. Appl. Phys. 34, 6416–6422 (1995). [CrossRef]
  54. C. P. Herz, J. Eicher, “Neue photoinitiatoren zur UV-strahlungshärtung,” Farbe Lack 85, 933 (1979).
  55. J. Eicher, C. P. Herz, I. Naito, W. Schnabel, “Laser flash photolysis investigation of primary processes in the sensitized polymerization of vinyl monomers IV: experiments with hydroxy alkylphenones,” J. Photochem. 12, 225–234 (1980). [CrossRef]
  56. T. E. Gismondi, “Influence of acrylate monomers on the resistance of UV-cured coatings to UV-induced degradation,” J. Radiat. Curing 11, 14–18 (1984).
  57. J. Trewhella, M. M. Oprysko, “Total internal reflection mirrors fabricated in polymeric optical waveguides via excimer laser ablation,” in Excimer Laser Materials Processing and Beam Delivery Systems, B.P. Piwczyk, ed., Proc. SPIE1377, 64–72 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited