OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 7 — Mar. 1, 1998
  • pp: 1243–1248

Laser-produced lithium plasma as a narrow-band extended ultraviolet radiation source for photoelectron spectroscopy

G. Schriever, S. Mager, A. Naweed, A. Engel, K. Bergmann, and R. Lebert  »View Author Affiliations


Applied Optics, Vol. 37, Issue 7, pp. 1243-1248 (1998)
http://dx.doi.org/10.1364/AO.37.001243


View Full Text Article

Enhanced HTML    Acrobat PDF (176 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Extended ultraviolet (EUV) emission characteristics of a laser-produced lithium plasma are determined with regard to the requirements of x-ray photoelectron spectroscopy. The main features of interest are spectral distribution, photon flux, bandwidth, source size, and emission duration. Laser-produced lithium plasmas are characterized as emitters of intense narrow-band EUV radiation. It can be estimated that the lithium Lyman-α line emission in combination with an ellipsoidal silicon/molybdenum multilayer mirror is a suitable EUV source for an x-ray photoelectron spectroscopy microscope with a 50-meV energy resolution and a 10-μm lateral resolution.

© 1998 Optical Society of America

OCIS Codes
(140.3530) Lasers and laser optics : Lasers, neodymium
(160.2120) Materials : Elements
(300.6560) Spectroscopy : Spectroscopy, x-ray
(350.5400) Other areas of optics : Plasmas

History
Original Manuscript: July 28, 1997
Published: March 1, 1998

Citation
G. Schriever, S. Mager, A. Naweed, A. Engel, K. Bergmann, and R. Lebert, "Laser-produced lithium plasma as a narrow-band extended ultraviolet radiation source for photoelectron spectroscopy," Appl. Opt. 37, 1243-1248 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-7-1243


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54, 181–342 (1993). [CrossRef]
  2. R. Lebert, W. Neff, D. Rothweiler, “Pinch plasma source for x-ray microscopy with nanosecond exposure time,” J. X-Ray Sci. Technol. 6, 107–140 (1996). [CrossRef]
  3. H. Kondo, T. Tomie, H. Shimizu, “Time of flight photoelectron spectroscopy with a laser-plasma x-ray source,” Appl. Phys. Lett. 69, 182–184 (1996). [CrossRef]
  4. N. M. Ceglio, A. M. Hawryluk, G. E. Sommargren, “Front-end design issues in soft-x-ray projection lithography,” Appl. Opt. 32, 7050–7056 (1993). [CrossRef] [PubMed]
  5. W. Neff, D. Rothweiler, K. Eidmann, R. Lebert, F. Richter, G. Winhart, “Laser and pinch plasma x-ray sources for microscopy and lithography,” in Applications of Laser Plasma Radiation, M. C. Richardson, ed., Proc. SPIE2015, 32–44 (1993). [CrossRef]
  6. F. Bijkerk, L. Shmaenok, A. van Honk, R. Bastiaensen, Y. Y. Platonov, A. P. Shevelko, “Laser plasma sources for soft x-ray projection lithography,” J. Phys. III (France) 4, 1669–1677 (1994). [CrossRef]
  7. F. Jin, M. Richardson, “New laser plasma source for extreme-ultraviolet lithography,” Appl. Opt. 34, 5750–5760 (1995). [CrossRef] [PubMed]
  8. R. Lebert, D. Rothweiler, A. Engel, K. Bergmann, W. Neff, “Pinch plasmas as intense EUV sources for laboratory applications,” Opt. Quantum Electron. 28, 241–259 (1996). [CrossRef]
  9. A. V. Vinogradov, V. N. Shlyaptsev, “Characteristics of a laser plasma x-ray source (review),” Sov. J. Quantum Electron. 17, 1–13 (1987). [CrossRef]
  10. M. Cardona, Photoemission in Solids I + II (Springer-Verlag, Berlin, 1979).
  11. W. Engel, M. E. Kordesch, H. H. Rotermund, S. Kubala, A. von Oertzen, “A UHV-compatible photoelectron emission microscope for applications in surface science,” Ultramicroscopy 36, 148–153 (1991). [CrossRef]
  12. Yagmaster YM 1200, Lumonics, Kanata, Ontario, K2K 1Y3.
  13. C. L. M. Ireland, “Gas breakdown by single, 40 ps - 50 ns, 1.06 μm laser pulses,” J. Phys. D 7, L179–L183 (1974). [CrossRef]
  14. W. Schwanda, K. Eidmann, M. C. Richardson, “Characterization of a flat-field grazing-incidence XUV spectrometer,” J. X-Ray Sci. Technol. 4, 8–17 (1993). [CrossRef]
  15. G. Schriever, R. Lebert, A. Naweed, S. Mager, W. Neff, S. Kraft, F. Scholze, G. Ulm, “Calibration of CCDs and of a pinhole transmission grating to be used as elements of a soft x-ray spectrograph,” Rev. Sci. Instrum. 68, 3301–3306 (1997). [CrossRef]
  16. Grazing-incidence gold grating, 1200 lines/mm and a focal length of 235 mm, Hitachi Ltd., Tokyo, Japan.
  17. Two-meter grazing-incidence spectrograph E 580, grating 1152 lines/mm, Hilger & Watts Ltd., London, England.
  18. Q2-plate, Ilford Photo, Paramus, New York 07653.
  19. Semiconductor diodes; type S1722-02 used for EUV radiation and type S1188-06 used for laser radiation, Hamamatsu Photonics K. K., Hamamatsu City, Japan.
  20. Condensor zone plate KZP 4 manufactured by Forschungseinrichtung Röntgenphysik, Universität Göttingen, Germany.
  21. R. Hilkenbach, J. Thieme, P. Guttmann, B. Niemann, “Phase zone plates for the Göttingen x-ray microscopes,” in X-Ray Microscopy II, D. Sayre, M. Howells, J. Kirz, H. Rarback, eds. (Springer-Verlag, Berlin, 1988), pp. 95–101.
  22. Multilayer mirror manufactured by Lehrstuhl für Molekül und Oberflächenphysik, Universität Bielefeld, Germany.
  23. A. G. Michette, Optical Systems for Soft X Rays (Plenum, New York, 1986). [CrossRef]
  24. G. Schriever, K. Bergmann, R. Lebert, “Narrowband laser produced EUV sources adapted to Si/Mo multilayer optics,” J. Appl. Phys. (to be published).
  25. H. Puell, “Heating of laser produced plasmas generated at plane solid targets,” Z. Naturforsch. A 25, 1807–1815 (1970).
  26. R. W. Holz, “Konzeption, realisierung und optimierung einer plasmaröntgenquelle für ein labormikroskop,” Ph.D. dissertation (Rheinisch Westfälische Technische Hochschule, Aachen, Germany, 1992).
  27. J. H. Underwood, T. W. Barbee, “Layered synthetic microstructures as Bragg diffractors for x-rays and extreme ultraviolet: theory and predicted performance,” Appl. Opt. 20, 3027–3034 (1981). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited