OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 9 — Mar. 20, 1998
  • pp: 1674–1681

Polarization-insensitive electroabsorption by use of quantum well interdiffusion

Wallace C. H. Choy and E. Herbert Li  »View Author Affiliations


Applied Optics, Vol. 37, Issue 9, pp. 1674-1681 (1998)
http://dx.doi.org/10.1364/AO.37.001674


View Full Text Article

Enhanced HTML    Acrobat PDF (227 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A paraboliclike quantum well structure can be used to produce polarization-insensitive waveguide type modulators. We propose the use of interdiffusion of AlGaAs/GaAs quantum wells to achieve the parabolic well shape. Criteria to achieve the paraboliclike quantum wells by interdiffusion are discussed. The theoretical results indicate that interdiffused quantum wells can produce equal eigenstate spacing, polarization insensitive Stark shifts, and modulation similar to an ideal parabolic quantum well. Three procedures are also proposed to develop polarization-insensitive on and off states in paraboliclike interdiffused quantum wells. The modulation depth is compatible with that of the measured parabolic quantum wells. For diffused quantum wells one can take advantage of using an as-grown rectangular quantum well with postgrowth thermal processing. These features demonstrate that an interdiffused quantum well structure can be used to produce a polarization-insensitive electroabsorptive modulator.

© 1998 Optical Society of America

OCIS Codes
(230.5440) Optical devices : Polarization-selective devices
(260.6580) Physical optics : Stark effect
(270.0270) Quantum optics : Quantum optics

History
Original Manuscript: June 20, 1997
Revised Manuscript: September 25, 1997
Published: March 20, 1998

Citation
Wallace C. H. Choy and E. Herbert Li, "Polarization-insensitive electroabsorption by use of quantum well interdiffusion," Appl. Opt. 37, 1674-1681 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-9-1674


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Aizawa, Y. Nagasawa, K. G. Ravikumar, T. Watanabe, “Polarization-independent switching operation in directional coupler using tensile-strained multiquantum well,” IEEE Photon. Technol. 7, 47–49 (1995). [CrossRef]
  2. R. C. Miller, A. C. Gossard, D. A. Kleinman, O. Munteamu, “Parabolic quantum wells with the GaAs-AlxGa1–xAs system,” Phys. Rev. B 29, 3740–3743 (1984). [CrossRef]
  3. T. Ishikawa, S. Nishimura, K. Tada, “Quantum-confined Stark effect in a parabolic-potential quantum well,” Jpn. J. Appl. Phys. 29, 1466–1473 (1990). [CrossRef]
  4. J. J. He, S. Charbonneau, P. J. Poole, G. C. Aers, Y. Feng, E. S. Koteles, R. D. Goldberg, I. V. Mitchell, “Polarization insensitive InGaAs/InGaAsP/InP amplifier using quantum well intermixing,” Appl. Phys. Lett. 69, 562–564 (1996). [CrossRef]
  5. E. S. Koteles, J. J. He, S. Charbonneau, P. J. Poole, G. C. Aers, Y. Feng, R. D. Goldberg, I. V. Mitchell, “Polarization-insensitive quantum well optoelectronic devices using quantum well shape modification,” in Emerging Components and Technologies for All-Optical Photonic, E. S. Koteles, A. E. Willner, eds., Proc. SPIE2918, 184–192 (1996). [CrossRef]
  6. W. C. H. Choy, E. H. Li, J. Micallef, “The polarization insensitive electroabsorptive and refractive modulation by utilizing InGaAsP/InP interdiffused quantum well,” IEEE J. Quantum Electron. 33, 1316–1322 (1997). [CrossRef]
  7. B. L. Weiss, ed., “Special issue on quantum well mixing for optoelectronics,” Opt. Quantum Electron. 23 (1991); E. H. Li, ed., Semiconductor Quantum Well Intermixing (Gordon & Breach, Amsterdam, 1998).
  8. W. C. H. Choy, E. H. Li, “The applications of interdiffused quantum well in normally-on electroabsorptive Fabry–Perot reflection modulator,” IEEE J. Quantum Electron. 33, 382–393 (1997). [CrossRef]
  9. M. Ghisoni, G. Parry, M. Pate, G. Hill, J. Roberts, “Post growth fabrication of GaAs/AlGaAs reflection modulators via impurity free disordering,” Jpn. J. Appl. Phys. 30, L1018–L1020 (1991). [CrossRef]
  10. P. J. Poole, S. Charbonneau, M. Dion, G. C. Aers, M. Buchanan, R. D. Goldberg, I. V. Mitchell, “Demonstration of an ion-implanted wavelength-shifted quantum-well laser,” IEEE Photon. Technol. Lett. 8, 16–21 (1996). [CrossRef]
  11. J. E. Zucker, H. D. Divino, T. Y. Chang, N. J. Sauer, “Less reduction in InGaAs/InGaAlAs quantum well electron transfer waveguides using ion implantation,” IEEE Photon. Technol. Lett. 6, 1105–1108 (1994). [CrossRef]
  12. S. R. Andrew, J. A. March, M. C. Holland, A. H. Kean, “Quantum-well laser with integrated passive waveguides fabricated by neutral impurity disordering,” IEEE Photon. Technol. Lett. 4, 426–428 (1992). [CrossRef]
  13. P. J. Hughes, E. H. Li, B. L. Weiss, “Thermal stability of AlGaAs/GaAs single quantum well structures using photoreflectance,” J. Vac. Sci. Technol. B 13, 2276–2283 (1995). [CrossRef]
  14. C. Thomspon, B. L. Weiss, “The effects of surface acoustic waves on the optical properties of AlGaAs/GaAs quantum well structures,” IEEE J. Quantum Electron. 33, 1601–1607 (1997).
  15. E. H. Li, B. L. Weiss, K. S. Chan, “Effect of interdiffusion on the subbands in an AlxGa1–xAs/GaAs single-quantum-well structure,” Phys. Rev. B 46, 15,180–15,192 (1992).
  16. W. C. H. Choy, “Optical modulation properties of interdiffused III–V semiconductor quantum wells,” MP thesis (University of Hong Kong, Hong Kong, 1996).
  17. K. Kash, B. Tell, P. Grabbe, E. A. Dobisz, H. G. Graighead, C. M. Tamargo, “Aluminum ion-implantation enhanced intermixing of GaAs-AlGaAs quantum-well structures,” J. Appl. Phys. 63, 90–194 (1988). [CrossRef]
  18. S. L. Chuang, D. Ahn, “Optical transitions in a parabolic quantum well with an applied electric field: analytical solution,” J. Appl. Phys. 65, 2822–2826 (1989). [CrossRef]
  19. S. Adachi, “GaAs, AlAs, and AlxGa1–xAs: material parameters for use in research and device applications,” J. Appl. Phys. 58, R1–R29 (1985). [CrossRef]
  20. D. E. Apsnes, S. M. Kelso, R. A. Logan, R. Bhat, “Optical properties of AlxGa1–xAs,” J. Appl. Phys. 60, 754–767 (1986). [CrossRef]
  21. Y. Huang, C. Lien, “The enhancement of optical third harmonic susceptibility in parabolic quantum well by triple resonance,” J. Appl. Phys. 75, 3223–3225 (1994). [CrossRef]
  22. J. Singh, S. Hong, P. K. Mhatacharya, R. Sahai, C. Lastufka, H. R. Sobel, “System requirements and feasibility studies for optical modulators based on GaAs/AlGaAs multiquantum well structures for optical processing,” J. Lightwave Technol. 6, 818–831 (1988). [CrossRef]
  23. T. Hayakawa, K. Takahashi, M. Kondo, T. Suyama, S. Yamamoto, T. Hijikata, “Enhancement in optical transitions in (111)-oriented GaAs-AlGaAs quantum well structures,” Phys. Rev. Lett. 60, 349–352 (1988). [CrossRef] [PubMed]
  24. E. H. Li, W. C. H. Choy, “Electroabsorptive properties of interdiffused quantum wells,” J. Appl. Phys. 82, 3861–3869 (1997). [CrossRef]
  25. W. C. H. Choy, P. Hughes, B. L. Weiss, E. H. Li, “The confinement profile of as-grown MOVPE AlGaAs/GaAs quantum well structures,” Mater. Res. Soc. Symp. Proc. 450, 425–430 (1997). [CrossRef]
  26. A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cuningham, W. Y. Jan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27, 2281–2295 (1991). [CrossRef]
  27. B. Pezeshki, S. M. Lord, T. B. Boykin, J. S. Harris, “GaAs/AlAs quantum wells for electro-absorption modulators,” Appl. Phys. Lett. 60, 2779–2781 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited