OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 1 — Jan. 1, 1999
  • pp: 139–151

Performance degradation of a Michelson interferometer due to random sampling errors

Douglas L. Cohen  »View Author Affiliations

Applied Optics, Vol. 38, Issue 1, pp. 139-151 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (196 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The performance of a standard Michelson interferometer is degraded by disturbances that cause the interferogram signal to be sampled at nonconstant time intervals. A formula that shows how the power spectrum of the random disturbances interacts with the signal to contaminate different regions of the measured spectrum is derived for the spectral noise. The sampling noise does not look conventionally noiselike because it is correlated over large regions of the measured spectrum, and adjustment of the unbalanced background interferogram to match the size of the balanced background interferogram minimizes the sampling-noise amplitude.

© 1999 Optical Society of America

OCIS Codes
(070.2590) Fourier optics and signal processing : ABCD transforms
(070.4790) Fourier optics and signal processing : Spectrum analysis
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(300.6340) Spectroscopy : Spectroscopy, infrared

Original Manuscript: June 23, 1998
Revised Manuscript: September 24, 1998
Published: January 1, 1999

Douglas L. Cohen, "Performance degradation of a Michelson interferometer due to random sampling errors," Appl. Opt. 38, 139-151 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. L. Mooney, D. R. Bold, A. A. Colao, A. E. Filip, S. E. Forman, J. P. Kerekes, P. H. Malyak, R. W. Miller, M. J. Persky, A. D. Pillsbury, D. E. Weidler, “POES high-resolution sounder study final report,” (Lincoln Laboratory, MIT, Cambridge, Mass., 1994).
  2. D. L. Mooney, D. R. Bold, M. S. Cafferty, D. L. Cohen, H. J. Jimenez, J. P. Kerekes, R. W. Miller, M. J. Persky, D. P. Ryan-Howard, “POES advanced sounder study (Phase II),” (Lincoln Laboratory, MIT, Cambridge, Mass., 1994).
  3. W. E. Bicknell, J. W. Burnside, L. M. Candell, H. W. Feinstein, D. R. Hearn, J. P. Kerekes, A. B. Plaut, D. P. Ryan-Howard, W. J. Scouler, D. E. Weidler, “GOES high-resolution interferometer study,” (Lincoln Laboratory, MIT, Cambridge, Mass., 1995).
  4. J. Chamberlain, The Principles of Interferometric Spectroscopy (Wiley, New York, 1979), p. 98.
  5. P. H. Wirsching, T. L. Paez, H. Ortiz, Random Vibrations Theory and Practice (Wiley-Interscience, John Wiley & Sons, Inc., New York, 1995), p. 354.
  6. J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, New York, 1978), pp. 50–57, 201.
  7. T. Nishiyama, T. Yamauchi, M. Ohno, M. Morii, N. Ura, K. Masutani, “New sampling method in Fourier spectroscopy,” Jpn. J. Appl. Phys. 14, 688–689 (1972).
  8. A. S. Zachor, “Drive nonlinearities: their effects in Fourier spectroscopy,” Appl. Opt. 16, 1412–1424 (1977). [CrossRef] [PubMed]
  9. A. S. Zachor, S. M. Aaronson, “Delay compensation: its effect in reducing sampling errors in Fourier spectroscopy,” Appl. Opt. 18, 68–75 (1979). [CrossRef] [PubMed]
  10. A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd ed. (McGraw-Hill, New York, 1991), p. 102.
  11. E. E. Bell, R. B. Sanderson, “Spectral errors resulting from random sampling-position errors in Fourier transform spectroscopy,” Appl. Opt. 11, 688–689 (1972). [CrossRef] [PubMed]
  12. L. Forman, W. H. Steel, G. A. Vanasse, “Correction of asymmetric interferograms obtained in Fourier spectroscopy,” J. Opt. Soc. Am. 50, 59–63 (1966). [CrossRef]
  13. D. Cohen, “Performance degradation of a Michelson interferometer when its misalignment angle is a rapidly varying, random time series,” Appl. Opt. 36, 4034–4042 (1997). [CrossRef] [PubMed]
  14. D. R. Hearn, “Fourier Transform Interferometry,” , (Lincoln Laboratory, MIT, Cambridge, Mass., 1995), p. 21.
  15. L. Rade, B. Westergren, eds., Beta β Mathematics Handbook, 2nd ed. (CRC Press, Boca Raton, Fla., 1990), p. 175.
  16. P. Haschberger, “Impact of the sinusoidal drive on the instrument line shape function of a Michelson interferometer with rotating retroreflector,” Appl. Spectrosc. 48, 307–315 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited