OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 1 — Jan. 1, 1999
  • pp: 18–28

Ultraviolet Radiometry with Synchrotron Radiation and Cryogenic Radiometry

Ping-Shine Shaw, Keith R. Lykke, Rajeev Gupta, Thomas R. O’Brian, Uwe Arp, Hunter H. White, Thomas B. Lucatorto, Joseph L. Dehmer, and Albert C. Parr  »View Author Affiliations


Applied Optics, Vol. 38, Issue 1, pp. 18-28 (1999)
http://dx.doi.org/10.1364/AO.38.000018


View Full Text Article

Acrobat PDF (187 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The combination of a cryogenic radiometer and synchrotron radiation enables detector scale realization in spectral regions that are otherwise difficult to access. Cryogenic radiometry is the most accurate primary detector-based standard available to date, and synchrotron radiation gives a unique broadband and continuous spectrum that extends from x ray to far IR. We describe a new cryogenic radiometer-based UV radiometry facility at the Synchrotron Ultraviolet Radiation Facility II at the National Institute of Standards and Technology. The facility is designed to perform a variety of detector and optical materials characterizations. The facility combines a high-throughput, normal incidence monochromator with an absolute cryogenic radiometer optimized for UV measurements to provide absolute radiometric measurements in the spectral range from 125 nm to approximately 320 nm. We discuss results on photodetector characterizations, including absolute spectroradiometric calibration, spatial responsivity mapping, spectroreflectance, and internal quantum efficiency. In addition, such characterizations are used to study UV radiation damage in photodetectors that can shed light on the mechanism of the damage process. Examples are also given for UV optical materials characterization.

[Optical Society of America ]

OCIS Codes
(040.7190) Detectors : Ultraviolet
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.5630) Instrumentation, measurement, and metrology : Radiometry

Citation
Ping-Shine Shaw, Keith R. Lykke, Rajeev Gupta, Thomas R. O’Brian, Uwe Arp, Hunter H. White, Thomas B. Lucatorto, Joseph L. Dehmer, and Albert C. Parr, "Ultraviolet Radiometry with Synchrotron Radiation and Cryogenic Radiometry," Appl. Opt. 38, 18-28 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-1-18


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. C. Ginnings and M. L. Reilly, “Calorimetric measurement of thermodynamic temperatures above 0 °C using total blackbody radiation,” in Temperature: Its Measurement and Control in Science and Industry, H. H. Plumb, ed. (Instrument Society of America, Pittsburgh, Pa., 1972), Vol. 4, Part I, pp. 339–348.
  2. C. R. Yokley, “Long wave infrared testing at NBS,” in Applications of Optical Metrology: Techniques and Measurements II, R. C. Harney, ed., Proc. SPIE 416, 2–8 (1983).
  3. T. J. Quinn and J. E. Martin, “A radiometric determination of the Stefan–Boltzmann constant,” in Precision Measurement and Fundamental Constants II, Natl. Bur. Stand. (U.S.) Spec. Publ. 617, 291–297 (1984).
  4. T. J. Quinn and J. E. Martin, “A radiometric determination of the Stefan–Boltzmann constant and thermodynamic temperature between −40 °C and +100 °C,” Philos. Trans. R. Soc. London Ser. A 316, 85–189 (1985).
  5. J. E. Martin, N. P. Fox, and P. G. Key, “A cryogenic radiometer for absolute radiometric measurements,” Metrologia 21, 147–155 (1985).
  6. T. R. Gentile, J. M. Houston, and C. L. Cromer, “Realization of a scale of absolute spectral response using the National Institute of Standards and Technology high-accuracy cryogenic radiometer,” Appl. Opt. 35, 4392–4403 (1996).
  7. T. R. Gentile, J. M. Houston, J. E. Hardis, C. L. Cromer, and A. C. Parr, “National Institute of Standards and Technology high-accuracy cryogenic radiometer,” Appl. Opt. 35, 1056–1068 (1996).
  8. T. C. Larason, S. S. Bruce, and C. L. Cromer, “The NIST high accuracy scale for absolute spectral response from 406 nm to 920 nm,” J. Res. Natl. Inst. Stand. 101, 133–140 (1996).
  9. T. C. Larason, S. S. Bruce, and A. C. Parr, “NIST measurement services: spectroradiometric detector measurements: Parts I and II—ultraviolet and visible to near infrared detectors,” Natl. Inst. Stand. Technol. (U.S.) Spec. Publ. 250–41 (1997).
  10. See, for example, G. Margaritondo, Introduction to Synchrotron Radiation (Oxford U. Press, New York, 1988), Chaps. 1 and 2.
  11. D. L. Ederer, E. B. Saloman, S. C. Ebner, and R. P. Madden, “The use of synchrotron radiation as an absolute source of VUV radiation,” J. Res. Natl. Inst. Stand. Technol. 79 A 761–774 (1975).
  12. M. L. Furst, R. M. Graves, L. R. Canfield, and R. E. Vest, “Radiometry at the NIST SURF II storage ring facility,” Rev. Sci. Instrum. 66, 2257–2259 (1995).
  13. J. Schwinger, “On the classical radiation of accelerated electrons,” Phys. Rev. 75, 1912–1925 (1949).
  14. B. Wende, “Radiometry with synchrotron radiation,” Metrologia 32, 419–423 (1996).
  15. G. Ulm, and B. Wende, “The radiometry laboratory of PTB at BESSY,” Rev. Sci. Instrum. 66, 2244–2247 (1995).
  16. H. Rabus, F. Scholze, R. Thornagel, and G. Ulm, “Detector calibration at the PTB radiometry laboratory at BESSY,” Nucl. Instrum. Methods A 377, 209–216 (1996).
  17. L. R. Canfield, “New far UV detector calibration facility at the National Bureau of Standards,” Appl. Opt. 26, 3831–3837 (1987).
  18. L. R. Canfield and N. Swanson, “Far ultraviolet detector standards,” J. Res. Natl. Bur. Stand. 92, 97–112 (1987).
  19. R. E. Vest, L. R. Canfield, M. L. Furst, R. P. Madden, and N. Swanson, “Dual grating monochromator for detector calibrations using synchrotron radiation as an absolute source at NIST,” Nucl. Instrum. Methods A 347, 291–294 (1994).
  20. A. Lau-Frambs, U. Kroth, H. Rabus, E. Tegeler, G. Ulm, and B. Wende, “First results with the new PTB cryogenic radiometer for the vacuum ultraviolet spectral range,” Metrologia 32, 571–574 (1995/1996).
  21. H. Rabus, V. Persch, and G. Ulm, “Synchrotron-radiation-operated cryogenic electric-substitution radiometer as the high-accuracy primary detector standard in the ultraviolet, vacuum-ultraviolet, and soft-x-ray spectral ranges,” Appl. Opt. 36, 5421–5440 (1997).
  22. P. S. Shaw, K. R. Lykke, R. Gupta, T. R. O’Brian, U. Arp, H. H. White, T. B. Lucatorto, J. L. Dehmer, and A. C. Parr, “New UV radiometry beamline at the Synchrotron Ultraviolet Radiation Facility at NIST,” Metrologia 35 (1998).
  23. J. Geist, E. F. Zalewski, and A. R. Schaefer, “Spectral response self-calibration and interpolation of silicon photodiodes,” Appl. Opt. 19, 3795–3799 (1980).
  24. J. Geist, D. Chandler-Horowitz, A. M. Robinson, and C. R. James, “Numerical modeling of silicon photodiodes for high accuracy applications, Parts I, II, and III,” J. Res. Natl. Inst. Stand. Technol. 96, 463–492 (1992).
  25. D. L. Ederer, B. E. Cole, and J. B. West, “A high-throughput 2-m normal incidence monochromator for SURF II,” Nucl. Instrum. Methods 172, 185–190 (1980).
  26. L. R. Hughey, “Improved resolution and flexibility of the SURF II high-throughput 2-m normal incidence monochromator,” Nucl. Instrum. Methods A 347, 294–298 (1994).
  27. L. P. Boivin and K. Gibb, “Monochromator-based cryogenic radiometry at the NRC,” Metrologia 32, 565–570 (1995/1996).
  28. Certain commercial equipment, instruments, or materials are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.
  29. B. N. Taylor and C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” NIST Tech. Note 1297, 2nd ed. (National Institute of Standards and Technology, Gaithersburg, Md., 1994).
  30. T. Saito, K. Katori, M. Nishi, and H. Onuki, “Spectral quantum efficiencies of semiconductor photodiodes in the far ultraviolet region,” Rev. Sci. Instrum. 60, 2303–2306 (1989).
  31. R. Korde and J. Geist, “Quantum efficiency stability of silicon photodiodes,” Appl. Opt. 26, 5284–5290 (1987).
  32. L. Fu and J. Fischer, “Characterization of photodiodes in the UV and visible spectral region based on cryogenic radiometry,” Metrologia 30, 297–303 (1993).
  33. C. L. Cromer, T. B. Lucatorto, T. R. O’Brian, and M. Walhout, “Improved dose metrology in optical lithography,” Solid State Technol. 39, 75 (1996).
  34. K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, and G. Ulm, “PtSi-n-Si Schottky-barrier photodetectors with stable spectral responsivity in the 120 nm to 250 nm spectral range,” Appl. Phys. Lett. 69, 3662–3664 (1996).
  35. T. R. O’Brian, “SURF III: the next generation radiometric storage ring facility at NIST,” in Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation, R. E. Huffman and C. G. Stergis, eds., Proc. SPIE 2831, 222–228 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited