OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 1 — Jan. 1, 1999
  • pp: 246–252

Two-dimensional imaging of dense tissue-simulating turbid media by use of sonoluminescence

Qimin Shen and Lihong V. Wang  »View Author Affiliations

Applied Optics, Vol. 38, Issue 1, pp. 246-252 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (830 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An optical imaging technique that is believed to be novel was developed for noninvasive cross-sectional imaging of tissuelike turbid media. By use of a sonoluminescence signal generated internally in the media with a 1-MHz continuous-wave ultrasound, two-dimensional images were produced for objects embedded in turbid media by a raster scan of the media. Multiple objects of different shapes were resolved with this imaging technique. The images showed a high contrast and good spatial resolution. The spatial resolution was limited by the focal size of the ultrasonic focus.

© 1999 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(110.6960) Imaging systems : Tomography
(110.7050) Imaging systems : Turbid media
(110.7170) Imaging systems : Ultrasound

Original Manuscript: April 20, 1998
Revised Manuscript: July 6, 1998
Published: January 1, 1999

Qimin Shen and Lihong V. Wang, "Two-dimensional imaging of dense tissue-simulating turbid media by use of sonoluminescence," Appl. Opt. 38, 246-252 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. R. Alfano, J. G. Fujimoto, eds., Advances in Optical Imaging and Photon Migration, Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996).
  2. B. Chance, R. R. Alfano, eds., Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, Proc. SPIE2979 (1997).
  3. L.-H. Wang, S. L. Jacques, “Application of probability of n scatterings of light passing through an idealized tissue slab in breast imaging,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 181–186.
  4. H. Frenzel, H. Schultes, “Luminescenz im ultraschallbeschickten Wasser,” Z. Phys. Chem. Abt. B 27, 421–424 (1934).
  5. B. P. Barber, S. J. Putterman, “Observation of synchronous picosecond sonoluminescence,” Nature352 (London), 318–320 (1991).
  6. E. B. Flint, K. S. Suslick, “Sonoluminescence from alkali-metal salt solutions,” J. Phys. Chem. 95, 1484–1488 (1991). [CrossRef]
  7. L. A. Crum, S. Putterman, “Sonoluminescence,” J. Acoust. Soc. Am. 91, 517 (1992). [CrossRef]
  8. C. C. Wu, P. H. Roberts, “Shock-wave propagation in a sonoluminescencing gas bubble,” Phys. Rev. Lett. 70, 3424–3427 (1993). [CrossRef] [PubMed]
  9. W. C. Moss, D. B. Clarke, J. W. White, D. A. Young, “Hydrodynamic simulations of bubble collapse and picosecond sonoluminescence,” Phys. Fluids 6, 2979–2985 (1994). [CrossRef]
  10. L. A. Crum, R. A. Roy, “Sonoluminescence,” Science 266, 233–234 (1994). [CrossRef] [PubMed]
  11. C. Eberlein, “Sonoluminescence as quantum vacuum radiation,” Phys. Rev. Lett. 76, 3842–3845 (1996). [CrossRef] [PubMed]
  12. J. B. Young, T. Schmiedel, W. Kang, “Sonoluminescence in high magnetic fields,” Phys. Rev. Lett. 77, 4816–4819 (1996). [CrossRef] [PubMed]
  13. B. P. Barber, R. A. Hiller, R. Löfstedt, S. J. Putterman, K. R. Weninger, “Defining the unknowns of sonoluminescence,” Phys. Rep. 281, 65–143 (1997). [CrossRef]
  14. L.-H. V. Wang, Q. Shen, “Sonoluminescent tomography of strongly scattering media,” Opt. Lett. 23, 561–563 (1998). [CrossRef]
  15. R. A. Hiller, B. P. Barber, “Producing light from a bubble of air,” Sci. Am. 272, 96 (1995). [CrossRef]
  16. W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990). [CrossRef]
  17. L. A. Crum, “Sonoluminescence, sonochemistry, and sonophysics,” J. Acoust. Soc. Am. 95, 559–562 (1994). [CrossRef]
  18. Y. T. Didenko, T. V. Gordeychuk, V. L. Koretz, “The effect of ultrasound power on water sonoluminescence,” J. Sound Vib. 147, 409–416 (1991). [CrossRef]
  19. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991). [CrossRef] [PubMed]
  20. L.-H. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995). [CrossRef] [PubMed]
  21. F. J. Fry, N. T. Sanghvi, R. S. Foster, R. Bihrle, C. Hennige, “Ultrasound and microbubbles: their generation, detection and potential utilization in tissue and organ therapy—experimental,” Ultrasound Med. Biol. 21, 1227–1237 (1995). [CrossRef]
  22. T. A. Whittingham, “The safety of ultrasound,” Imaging 6, 33–51 (1994).
  23. S. Daniels, T. Kodama, D. J. Price, “Damage to red blood cells induced by acoustic cavitation,” Ultrasound Med. Biol. 21, 105–111 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited