OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 1 — Jan. 1, 1999
  • pp: 37–46

Spatial impulse response of lithographic infrared antennas

Christophe Fumeaux, Glenn D. Boreman, Werner Herrmann, Fritz Kurt Kneubühl, and Hugo Rothuizen  »View Author Affiliations


Applied Optics, Vol. 38, Issue 1, pp. 37-46 (1999)
http://dx.doi.org/10.1364/AO.38.000037


View Full Text Article

Enhanced HTML    Acrobat PDF (485 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present measurements of the spatial response of infrared dipole and bow-tie lithographic antennas. Focused 10.6-µm radiation was scanned in two dimensions across the receiving area of each antenna. Deconvolution of the beam profile allowed the spatial response to be measured. The in-plane width of the antenna’s spatial response extends approximately one dielectric wavelength beyond the metallic structure. Determination of an antenna’s spatial response is important for several reasons. The power collected by the antenna can be calculated, if the collection area and the input irradiance (watts per square centimeter) are known. The actual power collected by the antenna is required for computation of responsivity and noise-equivalent power. In addition, the spatial response provides insight into the current-wave modes that propagate on an antenna and the nature of the fringe fields that exist in the adjacent dielectric.

© 1999 Optical Society of America

OCIS Codes
(040.0040) Detectors : Detectors
(040.1880) Detectors : Detection
(040.3060) Detectors : Infrared
(040.5160) Detectors : Photodetectors
(040.5570) Detectors : Quantum detectors

History
Original Manuscript: July 2, 1998
Revised Manuscript: August 18, 1998
Published: January 1, 1999

Citation
Christophe Fumeaux, Glenn D. Boreman, Werner Herrmann, Fritz Kurt Kneubühl, and Hugo Rothuizen, "Spatial impulse response of lithographic infrared antennas," Appl. Opt. 38, 37-46 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-1-37


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. B. Rutledge, D. P. Neikirk, D. P. Kasilingam, “Integrated-circuit antennas,” in Infrared and Millimeter Waves, K. J. Button, ed. (Academic, New York, 1983), Vol. 10.
  2. C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen, B. Lipphardt, C. Weiss, “Nanometer thin-film Ni-NiO-Ni diodes for mixing 28 THz CO2-laser emissions with difference frequencies up to 176 GHz,” Appl. Phys. B 66, 327–332 (1998). [CrossRef]
  3. J. G. Small, G. M. Elchinger, A. Javan, A. Sanchez, F. J. Bachner, D. L. Smythe, “AC electron tunneling at infrared frequencies: thin-film M-O-M diode structure with broad-band characteristics,” Appl. Phys. Lett. 24, 275–279 (1974). [CrossRef]
  4. E. Wiesendanger, F. K. Kneubühl, “Thin-film MOM-diodes for infrared detection,” Appl. Phys. 13, 343–349 (1977). [CrossRef]
  5. I. Wilke, W. Herrmann, F. K. Kneubühl, “Integrated nanostrip dipole antennas for coherent 30 THz infrared radiation,” Appl. Phys. B 58, 87–95 (1994). [CrossRef]
  6. I. Wilke, Y. Oppliger, W. Herrmann, F. K. Kneubühl, “Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation,” Appl. Phys. A 58, 329–341 (1994). [CrossRef]
  7. C. Fumeaux, G. D. Boreman, W. Herrmann, H. Rothuizen, F. K. Kneubühl, “Polarization response of asymmetric-spiral infrared antennas,” Appl. Opt. 36, 6485–6490 (1997). [CrossRef]
  8. E. N. Grossman, J. E. Sauvageau, D. G. McDonald, “Lithographic spiral antennas at short wavelengths,” Appl. Phys. Lett. 59, 3225–3227 (1991). [CrossRef]
  9. J. D. Kraus, Antennas, 2nd ed. (McGraw-Hill, New York, 1988).
  10. G. D. Boreman, A. Dogariu, C. Christodoulou, D. Kotter, “Modulation transfer function of antenna-coupled infrared detector arrays,” Appl. Opt. 35, 6110–6114 (1996). [CrossRef] [PubMed]
  11. D. B. Rutledge, S. E. Schwarz, A. T. Adams, “Infrared and submillimeter antennas,” Appl. Phys. 18, 713–729 (1978).
  12. L. O. Hocker, D. R. Sokoloff, V. Daneu, A. Szoke, A. Javan, “Frequency mixing in the infrared and far-infrared using a metal-to-metal point contact diode,” Appl. Phys. Lett. 12, 401–402 (1968). [CrossRef]
  13. S. Y. Wang, T. Izawa, T. K. Gustafson, “Coupling characteristics of thin-film metal-oxide-metal diodes at 10.6 µm,” Appl. Phys. Lett. 27, 481–483 (1975). [CrossRef]
  14. C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, F. K. Kneubühl, “Mixing of 30 THz laser radiation with nanometer thin-film Ni-NiO-Ni diodes and integrated bow-tie antennas,” Appl. Phys. B 63, 135–140 (1996). [CrossRef]
  15. C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen, B. Lipphardt, C. O. Weiss, “Mixing of 28 THz (10.7 µm) CO2-laser radiation by nanometer thin-film Ni-NiO-Ni diodes with difference frequencies up to 176 GHz,” Infrared Phys. Technol. 38, 393–396 (1997). [CrossRef]
  16. C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39, 123–183 (1998). [CrossRef]
  17. C. R. Brewitt-Taylor, D. J. Gunton, H. D. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–730 (1981). [CrossRef]
  18. M. Y. Frankel, S. Gupta, J. A. Valdmanis, G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microwave Theory Tech. 39, 910–915 (1991). [CrossRef]
  19. G. H. Brown, O. M. Woodward, “Experimentally determined radiation characteristics of conical and triangular antennas,” RCA Rev. 13, 425–452 (1952).
  20. R. Compton, R. McPhedran, Z. Popovic, G. Rebeiz, P. P. Tong, D. B. Rutledge, “Bow-tie antennas on a dielectric half-space: theory and experiment,” IEEE Trans. Antennas Propag. 35, 622–631 (1987). [CrossRef]
  21. M. Heiblum, S. Wang, J. R. Whinnery, T. K. Gustafson, “Characteristics of integrated MOM junctions at dc and at optical frequencies,” IEEE J. Quantum Electron. 14, 159–169 (1978). [CrossRef]
  22. Y. Suzaki, A. Tachibana, “Measurement of the µm sized radius of Gaussian laser beam using the scanning knife-edge,” Appl. Opt. 14, 2809–2810 (1975). [CrossRef] [PubMed]
  23. M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1968).
  24. E. L. Dereniak, G. D. Boreman, Infrared Detectors and Systems (Wiley, New York, 1996), Chap. 13.
  25. R. N. Bracewell, The Fourier Transform and Its Applications, 2nd ed. (McGraw-Hill, New York, 1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited