OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 1 — Jan. 1, 1999
  • pp: 77–85

Shaping of the end of a multimode optical fiber for efficient coupling light from a laser diode

Sergey B. Sevastianov, Sergey M. Vatnik, and Alexander P. Mayorov  »View Author Affiliations


Applied Optics, Vol. 38, Issue 1, pp. 77-85 (1999)
http://dx.doi.org/10.1364/AO.38.000077


View Full Text Article

Enhanced HTML    Acrobat PDF (155 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An entrance surface of a multimode optical fiber with the highest efficiency of coupling radiation from a laser diode is considered. The geometry of the surface is designed with the purpose of keeping a refracted ray inside the fiber with simultaneous minimization of the reflection coefficient in each point of the surface. As a good approximation to the ideal surface, the composite entrance surface of a cylinder–wedge shape is proposed. It has clearly improved the coupling efficiency as compared with that of the purely cylindrical surface. Analysis of the entrance surfaces is based on their transmission coefficients, depending on the incident ray direction.

© 1999 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(060.2310) Fiber optics and optical communications : Fiber optics
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3480) Lasers and laser optics : Lasers, diode-pumped

History
Original Manuscript: July 31, 1998
Published: January 1, 1999

Citation
Sergey B. Sevastianov, Sergey M. Vatnik, and Alexander P. Mayorov, "Shaping of the end of a multimode optical fiber for efficient coupling light from a laser diode," Appl. Opt. 38, 77-85 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-1-77


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Kubodera, J. Noda, “Pure single-mode LiNdP4O12 solid-state laser transmitter for 1.3-µm fiber-optic communications,” Appl. Opt. 21, 3466–3469 (1982). [CrossRef] [PubMed]
  2. W. Streifer, D. R. Scrifres, G. L. Harnagel, D. F. Welch, J. Berger, M. Sakamoto, “Advances in diode laser pumps,” IEEE J. Quantum Electron. 24, 883–893 (1988). [CrossRef]
  3. J. Berger, D. F. Welch, W. Streifer, D. R. Scifres, N. J. Hoffman, J. J. Smith, D. Radecki, “Fiber-bundle coupled, diode end-pumped Nd:YAG laser,” Opt. Lett. 13, 306–308 (1988). [CrossRef] [PubMed]
  4. H. Zbinden, J. E. Balmer, “Q-switched Nd:YLF laser end pumped by a diode-laser bar,” Opt. Lett. 15, 1014–1016 (1990). [CrossRef] [PubMed]
  5. J. G. Endriz, M. Vakili, G. S. Browder, M. DeVito, J. M. Haden, G. L. Harnagel, W. E. Plano, M. Sakamoto, D. F. Welch, S. Willing, D. P. Worland, H. C. Yao, “High power diode laser arrays,” IEEE J. Quantum Electron. 28, 952–965 (1992). [CrossRef]
  6. M. Oka, H. Masuda, Y. Kaneda, S. Kubota, “Laser-diode-pumped phase-locked Nd:YAG laser arrays,” IEEE J. Quantum Electron. 28, 1142–1147 (1992). [CrossRef]
  7. O. A. Vlasenko, Yu. D. Zavartsev, A. I. Zagumennyi, V. A. Kozlov, P. A. Studenikin, V. V. Ter-Mikirtychev, I. A. Shcherbakov, “Diode pumped GdVO4:Nd3+ laser with fiber pump input,” Quantum Electron. 22, 788–790 (1995).
  8. T. Graf, J. E. Balmer, “Lasing properties of diode-laser-pumped Nd:KGW,” Opt. Eng. 34, 2349–2352 (1995). [CrossRef]
  9. L. A. Zenteno, “Design of a device for pumping a double-clad fiber laser with a laser-diode bar,” Appl. Opt. 33, 7282–7287 (1994). [CrossRef] [PubMed]
  10. T. Y. Fan, R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24, 895–912 (1988). [CrossRef]
  11. L. G. Cohen, “Power coupling from GaAs injection lasers into optical fibers,” Bell Syst. Tech. J. 51, 573–594 (1972). [CrossRef]
  12. D. Kato, “Light coupling from a stripe-geometry GaAs diode laser into an optical fiber with spherical end,” J. Appl. Phys. 44, 2756–2758 (1973). [CrossRef]
  13. C. A. Brackett, “On the efficiency of coupling light from stripe-geometry GaAs lasers into multimode optical fibers,” J. Appl. Phys. 45, 2636–2637 (1974). [CrossRef]
  14. G. Eisenstein, D. Vitello, “Chemically etched conical microlenses for coupling single-mode lasers into single-mode fibers,” Appl. Opt. 21, 3470–3474 (1982). [CrossRef] [PubMed]
  15. H. M. Presby, A. F. Benner, C. A. Edwards, “Laser micromachining of efficient fiber microlenses,” Appl. Opt. 29, 2692–2695 (1990). [CrossRef] [PubMed]
  16. B. Messerschmidt, T. Possner, R. Goering, “Colorless gradient-index cylindrical lenses with high numerical apertures produced by silver-ion exchange,” Appl. Opt. 34, 7825–7830 (1995). [CrossRef] [PubMed]
  17. A. E. Prokofjev, O. V. Sizov, S. O. Chistjakov, “Gradient-optical system for coupling radiation of semiconductor laser diode into single-mode fiber,” J. Opt. Technol. 64, 67–69 (1997).
  18. K. Kawano, O. Mitomi, “Coupling characteristics of laser diode to multimode fiber using separate lens methods,” Appl. Opt. 25, 136–141 (1986). [CrossRef] [PubMed]
  19. J. Braat, “Design of beam-shaping optics,” Appl. Opt. 34, 2665–2670 (1995). [CrossRef] [PubMed]
  20. J. J. Snyder, P. Reichert, T. M. Baer, “Fast diffraction-limited cylindrical microlenses,” Appl. Opt. 30, 2743–2749 (1991). [CrossRef] [PubMed]
  21. J. K. Butler, J. Zoroofchi, “Radiation fields of GaAs-(AlGa)As injection lasers,” IEEE J. Quantum Electron. 10, 809–815 (1974). [CrossRef]
  22. C.-P. Cherng, T. C. Salvi, M. Osinski, J. G. McInerney, “Near field wavefront measurements of semiconductor laser arrays by shearing interferometry,” Appl. Opt. 29, 2701–2706 (1990). [CrossRef] [PubMed]
  23. S. Nemoto, “Experimental evaluation of a new expression for the far field of a diode laser beam,” Appl. Opt. 33, 6387–6392 (1994). [CrossRef] [PubMed]
  24. H. C. Casey, M. B. Panish, Heterostructure Lasers, Part A: Fundamental Principles (Academic, New York, 1978), Chap. 2.
  25. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. QE-9, 919–933 (1973). [CrossRef]
  26. R. G. Hunsperger, A. Yariv, A. Lee, “Parallel end-butt coupling for optical integrated circuits,” Appl. Opt. 16, 1026–1032 (1977). [CrossRef] [PubMed]
  27. A. Nicia, “Lens coupling in fiber-optic devices: efficiency limits,” Appl. Opt. 20, 3136–3145 (1981). [CrossRef] [PubMed]
  28. F. Brioschi, E. Nava, G. C. Reali, “Gain shaping and beam quality in diode-laser multiarray side-pumped solid-state lasers,” IEEE J. Quantum Electron. 28, 1070–1074 (1992). [CrossRef]
  29. T. M. Baer, D. F. Head, P. Gooding, G. J. Kintz, S. Hutchison, “Performance of diode-pumped Nd:YAG and Nd:YLF lasers in a tightly folded resonator configuration,” IEEE J. Quantum Electron. 28, 1131–1138 (1992). [CrossRef]
  30. B. Comaskey, G. F. Albrecht, S. P. Velsko, B. D. Moran, “24-W average power at 0.537 µm from an externally frequency-doubled Q-switched diode-pumped Nd:YOS laser oscillator,” Appl. Opt. 33, 6377–6382 (1994). [CrossRef] [PubMed]
  31. C. D. Marshall, L. K. Smith, R. J. Beach, M. A. Emanuel, K. I. Schaffers, J. Skidmore, S. A. Payne, B. H. T. Chai, “Diode-pumped ytterbium-doped Sr5(PO4)3F laser performance,” IEEE J. Quantum Electron. 32, 650–656 (1996). [CrossRef]
  32. H. C. Casey, M. B. Panish, J. L. Merz, “Beam divergence of the emission from double-heterostructure lasers,” J. Appl. Phys. 44, 5470–5475 (1973). [CrossRef]
  33. G. A. Hockam, “Radiation from a solid-state laser,” Electron. Lett. 9, 389–391 (1973). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited