OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 10 — Apr. 1, 1999
  • pp: 1926–1933

Fiber-Optic Voltage Sensor for SF6 Gas-Insulated High-Voltage Switchgear

Klaus Bohnert, Mathias Ingold, and Jadran Kostovic  »View Author Affiliations


Applied Optics, Vol. 38, Issue 10, pp. 1926-1933 (1999)
http://dx.doi.org/10.1364/AO.38.001926


View Full Text Article

Acrobat PDF (341 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an optical-fiber voltage sensor for 170-kV gas-insulated high-voltage switchgear. The sensor is based on the converse piezoelectric effect of quartz. The full voltage is applied to a cylinder-shaped quartz crystal. The resulting alternating piezoelectric deformation of the crystal is sensed by an elliptical-core dual-mode fiber, which is wound onto the circumferential crystal surface. The fiber is interrogated by low-coherence interferometry. We address the dielectric design of the sensor and verify its dielectric reliability under ac overvoltages and lightning impulse voltages. We then investigate the sensor performance, including accuracy, dynamic range, bandwidth, and temperature dependence.

© 1999 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.3180) Instrumentation, measurement, and metrology : Interferometry

Citation
Klaus Bohnert, Mathias Ingold, and Jadran Kostovic, "Fiber-Optic Voltage Sensor for SF6 Gas-Insulated High-Voltage Switchgear," Appl. Opt. 38, 1926-1933 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-10-1926


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. K. Shibata, “A fiber optic electric field sensor using the electro-optic effect of Bi4Ge4O12,” in First International Conference on Optical Fibre Sensors, IEE Conf. Pub. (London) 221, 164–168 (1983).
  2. K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, and Y. Ida, “Fiber-optic current and voltage sensors using a single Bi12GeO20 crystal,” J. Lightwave Technol. 1, 93–97 (1983).
  3. Y. Kurada, Y. Abe, H. Kuwahara, and K. Yoshinaga, “Field test of fiber-optic voltage and current sensors applied to gas insulated substation,” in Fiber Optic Sensors, H. J. Arditty and L. B. Jeunhomme, eds., Proc. SPIE 586, 30–37 (1985).
  4. T. Mitsui, K. Hosoe, H. Usami, and S. Miyamoto, “Development of fiber-optic voltage sensors and magnetic-field sensors,” IEEE Trans. Power Delivery 2, 87–93 (1987).
  5. T. Sawa, K. Kurosawa, T. Kaminishi, and T. Yokata, “Development of optical instrument transformers,” IEEE Trans. Power Delivery 5, 884–890 (1990).
  6. S. Kobayashi, A. Horide, I. Takagi, M. Higaki, G. Takahashi, E. Mori, and T. Yamagiwa, “Development and field test evaluation of optical current and voltage transformers for gas insulated switchgear,” IEEE Trans. Power Delivery 7, 815–821 (1992).
  7. A. F. Jaeger and L. Young, “High-voltage sensor employing an integrated optics Mach-Zehnder interferometer in conjunction with a capacitive divider,” J. Lightwave Technol. 7, 229–234 (1989).
  8. A. F. Jaeger and F. Rahmatian, “Integrated optics Pockels cell high-voltage sensor,” IEEE Trans. Power Delivery 10, 127–134 (1995).
  9. K. Bohnert and J. Nehring, “Fiber-optic sensing of electric field components,” Appl. Opt. 27, 4814–4818 (1988).
  10. K. Bohnert and J. Nehring, “Fiber-optic sensing of voltages by line integration of the electric field,” Opt. Lett. 14, 290–292 (1989).
  11. K. Bohnert, H. Brändle, and G. Frosio, “Field test of interferometric optical fiber high-voltage and current sensors,” in Tenth International Conference on Optical Fibre Sensors, B. Culshaw and J. D. C. Jones, eds., Proc. SPIE 2360, 16–19 (1994).
  12. B. Y. Kim, J. N. Blake, S. Y. Huang, and H. J. Shaw, “Use of highly elliptical-core fibers for two-mode fiber devices,” Opt. Lett. 12, 729–731 (1987).
  13. J. N. Blake, S. Y. Huang, B. Y. Kim, and H. J. Shaw, “Strain effects on highly elliptical core two-mode fibers,” Opt. Lett. 12, 732–734 (1987).
  14. J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, and H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3, 1062–1072 (1985).
  15. K. Bohnert, G. C. de Wit, and J. Nehring, “Coherence-tuned interrogation of a remote, elliptical-core, dual-mode fiber strain sensor,” J. Lightwave Technol. 13, 94–103 (1995).
  16. J. Tichy and G. Gautschi, Piezoelektrische Messtechnik (Springer-Verlag, Berlin, 1950), references therein.
  17. J. C. Brice, “Crystals for quartz resonators,” Rev. Mod. Phys. 57, 105–146 (1985).
  18. Y. Ning, K. T. V. Grattan, B. T. Meggitt, and A. W. Palmer, “Characteristics of laser diodes for interferometric use,” Appl. Opt. 28, 3657–3661 (1989).
  19. A. S. Gerges, T. P. Newson, and D. A. Jackson, “Coherence tuned fiber optic sensing system, with self-initialization, based on a multimode laser diode,” Appl. Opt. 29, 4473–4480 (1990).
  20. Y. Ning, K. T. V. Grattan, A. W. Palmer, and B. T. Meggitt, “Characteristics of a multimode laser diode in a dual-interferometer configuration,” J. Lightwave Technol. 8, 1773–1778 (1990).
  21. D. A. Jackson, R. Priest, A. Dandridge, and A. B. Tveten, “Elimination of drift in a single-mode optical fiber interferometer using a piezoelectrically stretched coiled fiber,” Appl. Opt. 19, 2926–2929 (1980).
  22. A. Kumar and R. K. Varshney, “Propagation characteristics of dual mode elliptical-core optical fibers,” Opt. Lett. 14, 817–819 (1989).
  23. “Voltage transformers,” in International Standard IEC 186, 2nd ed. [International Electrotechnical Commission (IEC), Geneva, Switzerland, 1987]; “Requirements for electronic voltage transformers,” in International Standard IEC 44–7 [International Electrotechnical Commission (IEC), Geneva, Switzerland, 1987].
  24. K. Bohnert and P. Pequignot, “Inherent temperature compensation of a dual-mode fiber voltage sensor with coherence-tuned interrogation,” J. Lightwave Technol. 16, 598–604 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited