OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 10 — Apr. 1, 1999
  • pp: 1953–1958

Polarimetric distributed feedback fiber laser sensor for simultaneous strain and temperature measurements

Oliver Hadeler, Erland Rønnekleiv, Morten Ibsen, and Richard I. Laming  »View Author Affiliations


Applied Optics, Vol. 38, Issue 10, pp. 1953-1958 (1999)
http://dx.doi.org/10.1364/AO.38.001953


View Full Text Article

Enhanced HTML    Acrobat PDF (94 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the application of a dual polarization distributed feedback (DFB) fiber laser as a strain and temperature sensor. By measurement of the absolute wavelength of one polarization as well as the polarization beat frequency, strain and temperature were determined simultaneously. The sensor has an accuracy of ±3 μ∊ and ±0.04 °C. Self-heating of the DFB fiber laser as a function of pump power was measured with this sensor.

© 1999 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(280.3420) Remote sensing and sensors : Laser sensors

History
Original Manuscript: July 22, 1998
Revised Manuscript: January 4, 1999
Published: April 1, 1999

Citation
Oliver Hadeler, Erland Rønnekleiv, Morten Ibsen, and Richard I. Laming, "Polarimetric distributed feedback fiber laser sensor for simultaneous strain and temperature measurements," Appl. Opt. 38, 1953-1958 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-10-1953


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Meltz, W. W. Morey, W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989). [CrossRef] [PubMed]
  2. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993). [CrossRef]
  3. A. D. Kersey, T. A. Berkoff, W. W. Morey, “Fiber-optic Bragg grating strain sensor with drift-compensated high-resolution interferometric wavelength-shift detection,” Opt. Lett. 18, 72–74 (1993). [CrossRef] [PubMed]
  4. M. G. Xu, J.-L. Archambault, L. Reekie, J. P. Dakin, “Discrimination between strain and temperature effects using dual-wavelength fibre grating sensors,” Electron. Lett. 30, 1085–1087 (1994). [CrossRef]
  5. M. Sudo, M. Nakai, K. Himeno, S. Suzaki, A. Wada, R. Yamauchi, “Simultaneous measurement of temperature and strain using PANDA fiber grating,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 170–173.
  6. M. G. Xu, L. Dong, L. Reekie, J. A. Tucknott, J. L. Cruz, “Temperature-independent strain sensor using a chirped Bragg grating in a tapered optical fibre,” Electron. Lett. 31, 823–825 (1995). [CrossRef]
  7. S. M. Melle, A. T. Alavie, S. Karr, T. Coroy, K. Liu, R. M. Measures, “A Bragg grating-tuned fiber laser strain sensor system,” IEEE Photonics Technol. Lett. 5, 263–266 (1993). [CrossRef]
  8. G. A. Ball, W. W. Morey, P. K. Cheo, “Single- and multipoint fiber-laser sensors,” IEEE Photonics Technol. Lett. 5, 267–270 (1993). [CrossRef]
  9. A. T. Alavie, S. E. Karr, A. Othonos, R. M. Measures, “A multiplexed Bragg grating fiber laser sensor system,” IEEE Photonics Technol. Lett. 5, 1112–1114 (1993). [CrossRef]
  10. S. C. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” J. Lightwave Technol. LT-1, 312–331 (1983). [CrossRef]
  11. H. K. Kim, S. K. Kim, B. Y. Kim, “Polarization control of polarimetric fiber-laser sensors,” Opt. Lett. 18, 1465–1467 (1993). [CrossRef] [PubMed]
  12. G. A. Ball, G. Meltz, W. W. Morey, “Polarimetric heterodyning Bragg-grating fiber-laser sensor,” Opt. Lett. 18, 1976–1978 (1993). [CrossRef] [PubMed]
  13. J. T. Kringlebotn, J.-L. Archambault, L. Reekie, D. N. Payne, “Er3+:Yb3+-codoped fiber distributed-feedback laser,” Opt. Lett. 19, 2101–2103 (1994). [CrossRef] [PubMed]
  14. E. Rønnekleiv, M. Ibsen, M. N. Zervas, R. I. Laming, “Characterization of intensity distribution in symmetric and asymmetric fiber DFB lasers,” in Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 80.
  15. J. Hübner, P. Varming, M. Kristensen, “Five wavelength DFB fibre laser source for WDM systems,” Electron. Lett. 33, 139–140 (1997). [CrossRef]
  16. J. T. Kringlebotn, W. H. Loh, R. I. Laming, “Polarimetric Er3+-doped fiber distributed-feedback laser sensor for differential pressure and force measurements,” Opt. Lett. 21, 1869–1871 (1996). [CrossRef] [PubMed]
  17. H. Singh, J. S. Sirkis, “Simultaneously measuring temperature and strain using optical fiber microcavities,” J. Lightwave Technol. 15, 647–653 (1997). [CrossRef]
  18. S.-Y. Huang, J. N. Blake, B. Y. Kim, “Perturbation effects on mode propagation in highly elliptical core two-mode fibers,” J. Lightwave Technol. 8, 23–33 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited