OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 10 — Apr. 1, 1999
  • pp: 1959–1967

Measurement of changes in optical path length and reflectivity with phase-shifting laser feedback interferometry

Ben Ovryn and James H. Andrews  »View Author Affiliations

Applied Optics, Vol. 38, Issue 10, pp. 1959-1967 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (178 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The operating characteristics of a novel phase-shifting interferometer are presented. Interference arises by reflecting the light from a sample back into the cavity of a cw He–Ne laser. Changes in phase and fringe visibility are calculated from an overdetermined set of phase-shifted intensity measurements with the phase shifts being introduced with an electro-optic modulator. The interferometer is sensitive enough to measure displacements below 1 Hz with a rms error of approximately 1 nm from a sample that reflects only 3% of the 28 µW that is incident on its surface. The interferometer is applied to the determination of cantilever bending of a piezoelectric bimorph.

© 1999 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(110.6880) Imaging systems : Three-dimensional image acquisition
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(180.3170) Microscopy : Interference microscopy

Original Manuscript: September 2, 1998
Revised Manuscript: January 4, 1999
Published: April 1, 1999

Ben Ovryn and James H. Andrews, "Measurement of changes in optical path length and reflectivity with phase-shifting laser feedback interferometry," Appl. Opt. 38, 1959-1967 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Li, B. J. Schnapp, “Improved nm displacement detector for microscopic beads at frequencies below 10 Hz,” Rev. Sci. Instrum. 68, 2195–2199 (1997). [CrossRef]
  2. K. Svoboda, C. F. Schmidt, B. J. Schnapp, S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature (London) 365, 721–727 (1993). [CrossRef]
  3. M. H. Kiang, O. Solgaard, K. Y. Lau, R. S. Muller, “Electrostatic combdrive-actuated micromirrors for laser-beam scanning and positioning,” IEEE J. Microelectromech. Syst. 7, 27–37 (1998). [CrossRef]
  4. B. Chui, W. T. D. Stowe, Y. Sungtack, K. E. Goodson, T. W. Kenny, H. J. Mamin, B. D. Terris, R. P. Ried, D. Rugar, “Low-stiffness silicon cantilevers with integrated heaters and piezoresistive sensors for high density AFM thermomechanical data storage,” IEEE J. Microelectromech. Syst. 7, 69–78 (1998). [CrossRef]
  5. E. Calloni, L. D. Fiore, A. Grado, L. Milano, “An interferometric device to measure the mechanical transfer function of the VIRGO mirror suspensions,” Rev. Sci. Instrum. 69, 1882–1885 (1998). [CrossRef]
  6. Th. H. Peek, P. T. Bolwijn, C. Th. Alkemade, “Axial mode number of gas lasers from moving-mirror experiments,” Am. J. Phys. 35, 820–831 (1967). [CrossRef]
  7. E. B. Hooper, G. Bekefi, “Laser interferometer for repetitively pulsed plasmas,” J. Appl. Phys. 37, 4083–4094 (1966), erratum, 38, 1998 (1967). [CrossRef]
  8. P. T. Bolwijn, “Single mode tuning dip in the modulated power output of gas lasers,” Phys. Lett. 19, 384–385 (1963). [CrossRef]
  9. R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. QE-16, 347–355 (1980). [CrossRef]
  10. G. A. Acket, D. Lenstra, A. J. Den Boef, B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. QE-20, 1163–1169 (1984). [CrossRef]
  11. A. Bearden, M. P. O’Neill, L. C. Osborne, T. L. Wong, “Imaging and vibrational analysis with laser-feedback interferometry,” Opt. Lett. 18, 238–240 (1993). [CrossRef] [PubMed]
  12. R. Juskaitis, T. Wilson, N. P. Rea, “Compact confocal interference microscopy,” Opt. Commun. 109, 167–177 (1994). [CrossRef]
  13. D. Sarid, V. Weissenberger, D. A. Iams, J. T. Ingle, “Theory of the laser diode interaction in scanning force microscopy,” IEEE J. Quantum Electron. 25, 1968–1972 (1989). [CrossRef]
  14. D. Sarid, D. A. Iams, J. T. Ingle, V. Weissenberger, “Performance of a scanning force microscope using a laser diode,” J. Vac. Sci. Technol. A 8, 378–383 (1990). [CrossRef]
  15. B. Ovryn, J. H. Andrews, “Phase-shifted laser feedback interferometry,” Opt. Lett. 23, 1078–1080 (1998). [CrossRef]
  16. K. Creath, “Phase measurement interferometry techniques” in Progress in Optics XXVI, E. Wolf, ed. (North-Holland, Amsterdam, 1988), pp. 349–393.
  17. J. E. Greivenkamp, J. H. Bruning, “Phase shifting interferometry” in Optical Shop Testing, D. Malacara, ed. (Wiley, New York, 1992), pp. 501–598.
  18. A. Yariv, Quantum Electronics (Wiley, New York, 1989), p. 192ff.
  19. P. Hariharan, B. F. Oreb, T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26, 2504–2505 (1987). [CrossRef] [PubMed]
  20. B. Ovryn, J. H. Andrews, S. J. Eppell, J. D. Khaydarov, “Phase shifted real time laser feedback interferometry,” in Laser Interferometry VIII: Techniques and Analysis, M. Kujawinska, R. J. Pryputniewicz, M. Takada, ed., Proc. SPIE2860, 263–274 (1996). [CrossRef]
  21. B. Ovryn, E. M. Haacke, “Temporal averaging of phase measurements in the presence of spurious phase drift: application to phase-stepped, real-time holographic interferometry,” Appl. Opt. 32, 147–154 (1993). [CrossRef] [PubMed]
  22. B. Ovryn, “Two camera phase measurements using phase stepped, real-time holographic interferometry,” in Holography, Interferometry and Optical Pattern Recognition in Biomedicine III, H. Podbielska, ed., Proc. SPIE1889, 120–131 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited