OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 10 — Apr. 1, 1999
  • pp: 2053–2058

Simple expressions for transmission and reflection matrix elements of a biaxial thin layer at normal incidence

E. Cojocaru  »View Author Affiliations

Applied Optics, Vol. 38, Issue 10, pp. 2053-2058 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (161 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The extended Jones matrix method is applied for determination of the transmission and reflection matrices for a normally incident plane wave upon an homogeneous and lossless biaxial thin layer. The elements of these matrices are expressed by simple analytical relations. By using these relations one can express analytically the polarization-dependent optical parameters to be determined by generalized ellipsometry.

© 1999 Optical Society of America

OCIS Codes
(080.2730) Geometric optics : Matrix methods in paraxial optics
(120.5700) Instrumentation, measurement, and metrology : Reflection
(120.7000) Instrumentation, measurement, and metrology : Transmission
(190.5330) Nonlinear optics : Photorefractive optics
(260.1180) Physical optics : Crystal optics
(260.5430) Physical optics : Polarization

Original Manuscript: August 3, 1998
Revised Manuscript: December 1, 1998
Published: April 1, 1999

E. Cojocaru, "Simple expressions for transmission and reflection matrix elements of a biaxial thin layer at normal incidence," Appl. Opt. 38, 2053-2058 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. Holmes, D. L. Feucht, “Electromagnetic wave propagation in birefringent multilayers,” J. Opt. Soc. Am. 56, 1763–1769 (1966). [CrossRef]
  2. S. Teitler, B. W. Henvis, “Refraction in stratified, anisotropic media,” J. Opt. Soc. Am. 60, 830–834 (1970). [CrossRef]
  3. J. Schesser, G. Eichmann, “Propagation of plane waves in biaxially anisotropic layered media,” J. Opt. Soc. Am. 62, 786–791 (1972). [CrossRef]
  4. D. J. De Smet, “Reflection from an oriented biaxial surface,” Appl. Opt. 26, 995–998 (1987). [CrossRef] [PubMed]
  5. M. A. Dreger, J. H. Erkkila, “Improved method for calculating phase-matching criteria in biaxial nonlinear materials,” Opt. Lett. 17, 787–788 (1992). [CrossRef] [PubMed]
  6. G. D. Landry, T. A. Maldonado, “Complete method to determine transmission and reflection characteristics at a planar interface between arbitrarily oriented biaxial media,” J. Opt. Soc. Am. A 12, 2048–2063 (1995). [CrossRef]
  7. P. Yeh, “Extended Jones matrix method,” J. Opt. Soc. Am. 72, 507–513 (1982). [CrossRef]
  8. E. Cojocaru, “Generalized Abeles relations for an anisotropic thin film of an arbitrary dielectric tensor,” Appl. Opt. 36, 2825–2829 (1997). [CrossRef] [PubMed]
  9. R. M. A. Azzam, N. M. Bashara, “Generalized ellipsometry for surfaces with directional preference: application to diffraction gratings,” J. Opt. Soc. Am. 62, 1521–1523 (1972). [CrossRef]
  10. M. Schubert, “Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems,” Phys. Rev. B 53, 4265–4274 (1996). [CrossRef]
  11. M. Schubert, B. Rheinlander, C. Cramer, H. Schmiedel, J. A. Woollam, C. M. Herzinger, B. Johs, “Generalized transmission ellipsometry for twisted biaxial dielectric media: application to chiral liquid crystals,” J. Opt. Soc. Am. A 13, 1930–1940 (1996). [CrossRef]
  12. H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, Mass., 1957), Chap. 4, pp. 106–109.
  13. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975), Chap. 14, pp. 665–718.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited