OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 10 — Apr. 1, 1999
  • pp: 2116–2127

Noise Analysis of a Combined Optical Coherence Tomograph and a Confocal Scanning Ophthalmoscope

Adrian Gh. Podoleanu and David A. Jackson  »View Author Affiliations


Applied Optics, Vol. 38, Issue 10, pp. 2116-2127 (1999)
http://dx.doi.org/10.1364/AO.38.002116


View Full Text Article

Acrobat PDF (1332 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A fiberized optical coherence tomographic (OCT) system is modified to produce a confocal image similar to that produced by a scanning laser ophthalmoscope. Two possible configurations are presented, one that can deliver either an OCT or a confocal image and another that is capable of producing both the OCT and the confocal images simultaneously. Using the later configuration, we demonstrate such images from the retina in the living eye. The penalty in terms of performance reduction introduced into the optical coherence tomograph when integrated with a confocal receiver and the signal-to-noise ratio analysis for the different confocal receiver configurations are presented.

© 1999 Optical Society of America

OCIS Codes
(110.2350) Imaging systems : Fiber optics imaging
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.1650) Medical optics and biotechnology : Coherence imaging
(170.1790) Medical optics and biotechnology : Confocal microscopy
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(170.4500) Medical optics and biotechnology : Optical coherence tomography

Citation
Adrian Gh. Podoleanu and David A. Jackson, "Noise Analysis of a Combined Optical Coherence Tomograph and a Confocal Scanning Ophthalmoscope," Appl. Opt. 38, 2116-2127 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-10-2116


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. H. Webb, “Scanning laser ophthalmoscope,” in Noninvasive Diagnostic Techniques in Ophthalmology, B. R. Masters, ed. (Springer-Verlag, New York, 1990), pp. 438–450.
  2. Data Sheets of the Scanning Laser Ophthalmoscope, G. Rodenstock Instruments GmbH, Postfach 1326, Heidelberg, Germany, (1996); Data Sheets of the Heidelberg Laser Scanning Systems, Heidelberg Engineering, GmbH, Heidelberg, Germany (1996).
  3. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
  4. A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3(1), 12–20 (1998).
  5. B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,” Opt. Lett. 20, 1486–1488 (1995).
  6. S. A. Safin, A. T. Semenov, and V. R. Shidlovski, “High-power superluminescent diodes with extremely small Fabry-Perot modulation depth,” Electron. Lett. 28, 127–129 (1992).
  7. Data sheets of Optical Coherence Tomography, Humphrey Instruments, 2992 Alvarado St., San Leandro, Calif. 94577 (1996).
  8. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997).
  9. J. Szydlo, H. Bleuler, R. Walti, and R. P. Salathe, “High-speed measurements in optical low-coherence reflectometry,” Meas. Sci. Technol. 9, 1159–1162 (1998).
  10. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ungarunyawee, and J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219–229 (1998).
  11. A. Gh. Podoleanu, G. M. Dobre, and D. A. Jackson, “En-face coherence imaging using galvanometer scanner modulation,” Opt. Lett. 23, 147–149 (1998).
  12. A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, and D. A. Jackson, “Digital signal processing for fast OCT imaging,” in Applied Optics and Optoelectronics, K. T. V. Grattan, ed. (Institute of Physics, Bristol, 1998), pp. 140–144.
  13. A. Gh. Podoleanu, and D. A. Jackson, “Combined optical coherence tomograph and scanning laser ophthalmoscope,” Electron. Lett. 34, 1088–1090 (1998).
  14. R. Juskaitis and T. Wilson, “Scanning interference and confocal microscopy,” J. Microsc. (Oxford) 176, 188–194 (1994).
  15. M. Kempe, W. Rudolph, and E. Welsch, “Comparative study of confocal and heterodyne microscopy for imaging through scattering media,” J. Opt. Soc. Am. A 13, 46–52 (1996).
  16. T. Wilson, Confocal Microscopy (Academic, London, 1990).
  17. A. Gh. Podoleanu, J. A. Rogers, D. J. Webb, and D. A. Jackson, “Criteria in the simultaneous presentation of the images provided by a stand alone OCT/SLO system,” in Medical Applications of Lasers in Dermatology, Cardiology, Ophthalmology, and Dentistry, P. Bjerring, H. Hoenigsmann, F. Lafitte, S. Andersson-Engels, H. J. Geschwind, H. J. Sterenborg, G. Bandieramonte, Z. Bekassy, R. Birngruber, A. J. Fercher, G. B. Altshuler, and R. Hibst, eds., Proc. SPIE 3564, 163–168 (1999).
  18. P. R. Morkel, R. I. Laming, and D. N. Payne, “Noise characteristics of high-power doped-fiber superluminescent sources,” Electron. Lett. 26, 96–97 (1990).
  19. K. Takada, “Noise in optical low-coherence reflectometry,” IEEE J. Quantum Electron. 34, 1098–1108 (1998).
  20. R. H. Webb and G. W. Hughes, “Detectors for scanning video imagers,” Appl. Opt. 32, 6227–6235 (1993).
  21. Nirvana balanced photodetector in 1997–1998 catalog, Vol. 8.2, New Focus, Inc., Santa Clara, Calif.
  22. P. P. Webb, R. J. McIntyre, and J. J. Conradi, “Properties of avalanche photodiodes,” RCA Rev. 35, 234–278 (1974).
  23. Safe Use of Lasers, ANSI, Z 136.1 (American National Standards Institute, New York, 1986).
  24. R. Ulrich and S. C. Rashleigh, “Beam-to-fiber coupling with low standing wave ratio,” Appl. Opt. 19, 2453–2456 (1980).
  25. K. Takada, A. Himeno, and K. Yukimatsu, “Phase-noise and shot-noise operations of low coherence optical time domain reflectometry,” Appl. Phys. Lett. 59, 2483–2485 (1991).
  26. T. Wilson, “The role of the pinhole in confocal imaging systems,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, New York, 1990), Chap. 11, pp. 113–126.
  27. T. R. Corle and G. S. Kino, Confocal Scanning Optical Microscopy and Related Imaging Systems, (Academic, San Diego, Calif., 1996).
  28. F. C. Delori and K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061–1077 (1989).
  29. A. W. Dreher, J. F. Bille, and R. N. Weinreb, “Active optical depth resolution improvement of the laser tomographic scanner,” Appl. Opt. 28, 804–808 (1989).
  30. J. Z. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
  31. S. Kimura and T. Wilson, “Confocal scanning optical microscope using single-mode fiber for signal detection,” Appl. Opt. 30, 2143–2150 (1991).
  32. W. V. Sorin and D. M. Baney, “A simple intensity noise reduction technique for optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4, 1404–1406 (1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited