OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 11 — Apr. 10, 1999
  • pp: 2240–2248

Electronic and Optical Moiŕ Interference with Microchannel Plates: Artifacts and Benefits

Anton S. Tremsin, Oswald H. W. Siegmund, Mark A. Gummin, Patrick N. Jelinsky, and Josef M. Stock  »View Author Affiliations


Applied Optics, Vol. 38, Issue 11, pp. 2240-2248 (1999)
http://dx.doi.org/10.1364/AO.38.002240


View Full Text Article

Acrobat PDF (3432 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The spatial resolution of position-sensitive detectors that use stacks of microchannel plates (MCP’s) with high-resolution anodes can be better than 20-μm FWHM [Proc. SPIE 3114, 283–294 (1997)]. At this level of accuracy, channel misalignments of the MCP’s in the stack can cause observable moiré interference patterns. We show that the flat-field detector response can have moiré beat pattern modulations of as great as ~27% with periods from as small as a few channel diameters to as great as the size of a MCP multifiber. These modulations, however, may be essentially eliminated by rotation of the MCP’s or by a mismatch of the channel sizes. We also discuss how the modulation phenomena can be a useful tool for mapping the metric nonlinearities of MCP detector readout systems. Employing the optical moiré effect, we demonstrate a simple, but effective, technique for evaluation of geometrical deformations simultaneously over a large MCP area. For a typical MCP, with a 60-channel-wide multifiber, we can obtain accuracies of 1.2 mrad for multifiber rotations and twists and 35/(L/p) mrad for channel-long axis distortions (where L/p is MCP thickness to interchannel distance ratio). This technique may be used for the development of MCP x-ray optics, which impose tight limitations on geometrical distortions, which in turn are not otherwise easily measurable with high accuracy.

© 1999 Optical Society of America

OCIS Codes
(040.7190) Detectors : Ultraviolet
(110.2970) Imaging systems : Image detection systems
(110.7440) Imaging systems : X-ray imaging
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.4120) Instrumentation, measurement, and metrology : Moire' techniques
(350.6090) Other areas of optics : Space optics

Citation
Anton S. Tremsin, Oswald H. W. Siegmund, Mark A. Gummin, Patrick N. Jelinsky, and Josef M. Stock, "Electronic and Optical Moiŕ Interference with Microchannel Plates: Artifacts and Benefits," Appl. Opt. 38, 2240-2248 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-11-2240


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. S. Yokozeki, “Moire fringes,” Opt. Lasers Eng. 3, 15–27 (1982).
  2. O. Kafri and I. Glatt, The Physics of Moire Metrology (Wiley, New York, 1990).
  3. G. M. Lawrence, “Hex-square moiré patterns in imagers using microchannel plates,” Appl. Opt. 28, 4337–4343 (1989).
  4. C. Xiangqun and C. Weijian, “Calculation of the contrast of moiré deflectometric fringes,” in Interferometry: Techniques and Analysis II, G. M. Brown, O. Y. Kwon, and M. Kujawinska, eds., Proc. SPIE 2003, 185–192 (1993).
  5. J. C.-Y. Yang and W. H. Tsai, “Suppression of moiré patterns in scanned halftone images by double scans with grid movements,” Pattern Recogn. Lett. 18, 213–227 (1997).
  6. R. P. Williams, D. H. Davies, and G. Harburn, “On randomization techniques for the suppression of unwanted moiré patterns in images generated by a scanning system with a periodic amplitude defect,” Opt. Acta 33, 1311–1319 (1986).
  7. O. H. W. Siegmund, S. Chakrabarti, D. M. Cotton, and M. Lampton, “A position sensitive detector for EUV remote sensing,” IEEE Trans. Nucl. Sci. 36, 916–920 (1989).
  8. G. W. Fraser, “Imaging detectors for FUV and UEV wavelengths,” Adv. Space Res. 11(11), 155–166 (1991).
  9. J. L. Wiza, “Microchannel plate detectors,” Nucl. Instrum. Methods 162, 587–601 (1979).
  10. W. C. Priedhorsky, A. G. Peele, and K. A. Nugent, “An x-ray all-sky monitor with extraordinary sensitivity,” Mon. Not. R. Astron. Soc. 279, 733–750 (1996).
  11. A. N. Brunton, J. E. Lees, G. W. Fraser, A. S. Tremsin, W. B. Feller, and P. L. White, “MCP based x-ray collimators for lithography of semiconductor devices,” in Multilayer and Grazing Incidence X-Ray/EUV Optics III, R. B. Hoover and A. B. C. Walker, eds., Proc. SPIE 2805, 212–221 (1996).
  12. S. N. Osterman, G. J. Rottman, D. M. Hassler, W. E. McClintock, and G. M. Lawrence, “Comparison of the imaging characteristics of curved-channel and straight-channel microchannel plates,” Appl. Opt. 36, 753–759 (1997).
  13. G. W. Fraser, J. F. Pearson, G. C. Smith, M. Lewis, and M. A. Barstow, “The gain characteristics of microchannel plates for x-ray photon counting,” IEEE Trans. Nucl. Sci. NS-30, 455–460 (1983).
  14. M. L. Edgar, R. Kessel, J. S. Lapington, and D. M. Walton, “Spatial charge cloud distribution of microchannel plates,” Rev. Sci. Instrum. 60, 3673–3680 (1989).
  15. O. H. W. Siegmund, M. A. Gummin, J. M. Stock, D. R. Marsh, T. Sasseen, R. Raffanti, and J. Hull, “Delay line microchannel plate detectors for the far ultraviolet spectroscopic explorer satellite,” in Space Optics 1994: Earth Observation and Astronomy, M. G. Cerutti-Maori and P. Roussel, Jr., eds., Proc. SPIE 2209, 388–399 (1994).
  16. J. E. Lees, J. F. Pearson, “A large area MCP detector for x-ray imaging,” Nucl. Instrum. Methods Phys. Res. A 384, 410–424 (1997).
  17. O. H. W. Siegmund, M. A. Gummin, J. Stock, G. Naletto, G. A. Gaines, R. Raffanti, J. Hull, R. Abiad, T. Rodriguez-Bell, T. Magoncelli, P. N. Jelinsky, W. Donakowski, and K. E. Kromer, “Performance of the double delay line microchannel plate detectors for the Far-Ultraviolet Spectroscopic Explorer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy VIII, O. H. W. Siegmund, Jr., and M. A. Gummin, eds., Proc. SPIE 3114, 283–294 (1997).
  18. A. S. Tremsin, J. F. Pearson, G. W. Fraser, W. B. Feller, and P. B. White, “Microchannel plate operation at high count rates: new results,” Nucl. Instrum. Methods Phys. Res. A 379, 139–151 (1996).
  19. V. A. Arkadiev, H. E. Gorny, D. I. Gruev, A. A. Karnaukhov, A. V. Kolomiitsev, M. A. Kumakhov, N. Langhoff, D. V. Shandintsev, and R. Wedell, “The use of x-ray capillary optics for lithography and microscopy,” Opt. Quantum Electron. 28, 309–314 (1996).
  20. G. W. Fraser, A. N. Brunton, J. E. Lees, J. F. Pearson, R. Willingale, D. L. Emberson, W. B. Feller, M. Stedman, and J. Haycocks, “Development of microchannel plate (MCP) x-ray optics,” in Multilayer and Grazing Incidence X-Ray/EUV Optics II, R. B. Hoover and A. B. C. Walker, eds., Proc. SPIE 2011, 215–226 (1994).
  21. A. G. Peele, K. A. Nugent, A. V. Rode, K. Gabel, M. C. Richardson, R. Strack, and W. Siegmund, “X-ray focusing with lobster-eye optics: a comparison of theory with experiment,” Appl. Opt. 35, 4420–4425 (1996).
  22. J. R. P. Angel, “Lobster eyes as x-ray telescopes,” Astrophys. J. 233, 364–373 (1979).
  23. W. C. Priedhorsky, A. G. Peele, and K. A. Nugent, “Next generation x-ray all-sky monitor,” in X-Ray and Extreme Ultraviolet Optics, A. B. C. Walker and R. B. Hoover, eds., Proc. SPIE 2515, 216–219 (1995).
  24. A. N. Brunton, G. W. Fraser, J. E. Lees, and I. C. E. Turcu, “Metrology and modeling of microchannel plate x-ray optics,” Appl. Opt. 36, 5461–5470 (1997).
  25. D. M. Hassler, G. J. Rottman, and G. M. Lawrence, “Position offsets in curved-channel microchannel plate detectors,” Appl. Opt. 30, 3575–3581 (1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited