OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 11 — Apr. 10, 1999
  • pp: 2256–2262

Complex Phase Tracing Method for Fringe Pattern Analysis

Janusz Kozłowski and Giovanni Serra  »View Author Affiliations


Applied Optics, Vol. 38, Issue 11, pp. 2256-2262 (1999)
http://dx.doi.org/10.1364/AO.38.002256


View Full Text Article

Acrobat PDF (541 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present what we believe to be a novel complex phase tracing method for fringe pattern analysis related to the phase-locked loop idea. The image with deformed complex fringes is analyzed with lexicographic scansion that leads directly to the investigated phase without unwrapping. Robustness of the procedure is ensured by the delay mechanism in the process of calculating the reference value. A numerical model and examples of application of the presented method are given.

© 1999 Optical Society of America

OCIS Codes
(100.5070) Image processing : Phase retrieval
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.3180) Instrumentation, measurement, and metrology : Interferometry

Citation
Janusz Kozłowski and Giovanni Serra, "Complex Phase Tracing Method for Fringe Pattern Analysis," Appl. Opt. 38, 2256-2262 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-11-2256


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. Takeda, “Spatial-carrier fringe-pattern analysis and its application to precision interferometry and profilometry: an overview,” Ind. Metrol. 1, 79–99 (1990).
  2. K. Patorski, Handbook of the Moiré Fringe Technique (Elsevier, Amsterdam, 1993), Chap. 13.
  3. D. L. Fried, “Least-squares fitting a wave-front distortion estimate to an array of phase-differences measurements,” J. Opt. Soc. Am. 67, 370–378 (1977).
  4. D. C. Ghiglia and L. A. Romero, “Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods,” J. Opt. Soc. Am. 11, 107–117 (1994).
  5. J. L. Marroquin and M. Rivera, “Quadratic regularization functionals for phase unwrapping,” J. Opt. Soc. Am. 12, 2393–2400 (1995).
  6. M. Servin, J. L. Marroquin, and D. Malacara-Hernandez, “Some applications of quadratic cost functionals in fringe analysis,” in Laser Interferometry VIII: Techniques and Analysis, M. Kujawinska, R. J. Pryputniewicz, and M. Takeda, eds., Proc. SPIE 2860, 24–33 (1996).
  7. M. Rivera, M. Servin, and J. L. Marroquin, “Fourier transform technique for phase unwrapping with minimized boundary effects,” in Laser Interferometry VIII: Techniques and Analysis, M. Kujawinska, R. J. Pryputniewicz, and M. Takeda, eds. Proc. SPIE 2860, 54–60 (1996).
  8. R. Rodriguez-Vera and M. Servin, “Phase locked loop profilometry,” Opt. Laser Technol. 26, 393–397 (1994).
  9. M. Servin, R. Rodriguez-Vera, and D. Malacara, “Noisy fringe pattern demodulation by an iterative phase locked loop,” Opt. Lasers Eng. 23, 355–365 (1995).
  10. J. Kozłowski and G. Serra, “A new modified PLL method for fringe pattern demodulation,” Opt. Eng. 36, 2025–2030 (1997).
  11. J. L. Marguin, M. Servin, and R. Rodriguez-Vera, “Adaptative quadrature filters and the recovery of phase from fringe pattern images,” J. Opt. Soc. Am. 14, 1742–1753 (1977).
  12. J. H. Bruning, D. R. Herriot, J. E. Gallagher, D. P. Rosenfield, A. D. White, and D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693–2703 (1974).
  13. G. T. Reid, “Automatic fringe pattern analysis: a review,” Opt. Lasers Eng. 7, 37–68 (1986/1987).
  14. Y. Ichioka and M. Inuiya, “Direct phase detecting system,” Appl. Opt. 11, 1507–1514 (1972).
  15. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 56–160 (1982).
  16. C. Roddier and F. Roddier, “Interferogram analysis using Fourier transform techniques,” Appl. Opt. 26, 1668–1673 (1987).
  17. W. W. Macy, Jr., “Two-dimensional fringe-pattern analysis,” Appl. Opt. 22, 3898–3901 (1983).
  18. M. Kujawińska and J. Wójciak, “High accuracy Fourier transform fringe pattern analysis,” Opt. Lasers Eng. 14, 325–339 (1991).
  19. T. Kreis, Holographic Interferometry (Akademie, Berlin, 1996).
  20. J. Kozłowski and G. Serra, “Analysis of the complex phase error introduced by the application of the Fourier transform method,” J. Mod. Opt. (1999), in press.
  21. A. Papoulis, Circuits and Systems: A Modern Approach (Holt, Rinehart & Wilson, New York, 1980).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited