OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 11 — Apr. 10, 1999
  • pp: 2270–2281

Demonstration and Architectural Analysis of Complementary Metal-Oxide Semiconductor /Multiple-Quantum-Well Smart-Pixel Array Cellular Logic Processors for Single-Instruction Multiple-Data Parallel-Pipeline Processing

Jen-Ming Wu, Charles B. Kuznia, Bogdan Hoanca, Chih-Hao Chen, and Alexander A. Sawchuk  »View Author Affiliations


Applied Optics, Vol. 38, Issue 11, pp. 2270-2281 (1999)
http://dx.doi.org/10.1364/AO.38.002270


View Full Text Article

Acrobat PDF (3487 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an optoelectronic-VLSI system that integrates complementary metal-oxide semiconductor/multiple-quantum-well smart pixels for high-throughput computation and signal processing. The system uses 5 × 10 cellular smart-pixel arrays with intrachip electrical mesh interconnections and interchip optical point-to-point interconnections. Each smart pixel is a fine grain microprocessor that executes binary image algebra instructions. There is one dual-rail optical modulator output and one dual-rail optical detector input in each pixel. These optical input–output arrays provide chip-to-chip optical interconnects. Cascading these smart-pixel array chips permits direct transfer of two-dimensional data or images in parallel. We present laboratory demonstrations of the system for digital image edge detection and digital video motion estimation. We also analyze the performance of the system compared with that of conventional single-instruction–multiple-data processors.

© 1999 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(200.2610) Optics in computing : Free-space digital optics
(200.4650) Optics in computing : Optical interconnects
(200.4690) Optics in computing : Morphological transformations

Citation
Jen-Ming Wu, Charles B. Kuznia, Bogdan Hoanca, Chih-Hao Chen, and Alexander A. Sawchuk, "Demonstration and Architectural Analysis of Complementary Metal-Oxide Semiconductor /Multiple-Quantum-Well Smart-Pixel Array Cellular Logic Processors for Single-Instruction Multiple-Data Parallel-Pipeline Processing," Appl. Opt. 38, 2270-2281 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-11-2270


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. A. Sawchuk, “Smart pixel devices and free-space digital optics applications,” in Proceedings of 1995 IEEE/LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1995), pp. 268–269.
  2. Semiconductor Industry Association, The National Technology Roadmap for Semiconductors (Sematech, Inc., San Jose, Calif., 1997).
  3. K. W. Goossen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, and D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
  4. A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, T. K. Woodward, J. E. Ford, G. F. Aplin, L. A. D’Asaro, S. P. Hui, and B. Tseng, “3-D integration of MQW modulators over active sub-micron CMOS circuits: 375Mb/s transimpedance receiver–transmitter circuit,” IEEE Photon. Technol. Lett. 7, 1288–1290 (1995).
  5. T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D’Asaro, and L. M. F. Chirovsky, “1-Gb/s two-beam transimpedance smart pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8 μm silicon CMOS,” IEEE Photon. Technol. Lett. 8, 422–424 (1996).
  6. A. V. Krishnamoorthy and K. W. Goossen, “Progress in optoelectronic-VLSI smart pixel technology based on GaAs/AlGaAs MQW modulators,” Int. J. Optoelectron. 11, 181–198 (1997).
  7. K.-S. Huang, B. K. Jenkins, and A. A. Sawchuk, “Image algebra representation of parallel optical binary arithmetic,” Appl. Opt. 28, 1263–1278 (1989).
  8. K.-S. Huang, A. A. Sawchuk, B. K. Jenkins, P. Chavel, J.-M. Wang, A. G. Weber, C.-H. Wang, and I. Glaser, “Digital optical cellular image processor (DOCIP): experimental implementation,” Appl. Opt. 32, 166–173 (1993).
  9. C. B. Kuznia, J.-M. Wu, C.-H. Chen, A. A. Sawchuk, and L. Cheng, “Hybrid CMOS/SEED smart pixel array for 2D parallel pipeline operations,” in Digest IEEE/LEOS 1996 Summer Topical Meetings: Smart Pixels (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1996), pp. 80–81.
  10. C. B. Kuznia, J.-M. Wu, C.-H. Chen, B. Hoanca, L. Cheng, A. G. Weber, and A. A. Sawchuk, “Two-dimensional parallel pipeline processing with smart pixel array cellular logic (SPARCL) processors: system implementation,” submitted to J. Lightwave Technol.
  11. P. Maragos and R. Shafer, “Morphological systems for multidimensional signal processing,” Proc. IEEE 78, 690–709 (1990).
  12. D. Le Gall, “MPEG: a video compression standard for multimedia applications,” Commun. ACM 34, 46–58 (1991).
  13. A. Broggi and F. Gregoretti, “Performance evaluation and optimization in low-cost cellular SIMD systems,” Microprocess. Microprogramm. 41, 659–678 (1996).
  14. K. Hwang, Advanced Computer Architecture: Parallelism, Scalability, Programmability (McGraw-Hill, New York, 1994).
  15. J. M. del Rosario, and A. K. Choudhary, “High-performance I/O for massively parallel computers—problems and prospects,” IEEE Comput. 27(3), 59–68 (1994).
  16. J. D. Allen and D. E. Schimmel, “Issues in the design of high performance SIMD architectures,” IEEE Trans. Parallel Distr. Syst. 7, 818–829 (1996).
  17. J. Goodenough, R. J. Meacham, J. D. Morris, N. L. Seed, and P. A. Ivey, “A single chip video signal processing architecture for image processing, coding, and computer vision,” IEEE Trans. Circ. Syst. Video Technol. 5, 436–445 (1995).
  18. S. Okazaki, Y. Fujita, and N. Yamashita, “A compact real-time vision system using integrated memory array processor architecture,” IEEE Trans. Circ. Syst. Video Technol. 5, 446–452 (1995).
  19. H. D. Santos, J. C. Ramalho, J. M. Fernandes, and A. J. Proenca, “A heterogeneous computer vision architecture: implementation issues,” Comput. Syst. Eng. 6, 401–408 (1995).
  20. J.-M. Wu, C. B. Kuznia, B. Hoanca, C.-H. Chen, L. Cheng, A. G. Weber, and A. A. Sawchuk, “Smart pixel array cellular logic (SPARCL) processor for eliminating SIMD I/O bottlenecks: system demonstration and performance scaling,” in Optics in Computing, Vol. 8 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 152–154.
  21. J.-M. Wu, C. B. Kuznia, B. Hoanca, C.-H. Chen, and A. A. Sawchuk, “Integration of CMOS/MQW smart pixel array cellular logic (SPARCL) processors for SIMD parallel pipeline processing,” presented at the 1997 North American Chinese Photonics Technology Conference, Los Angeles, Calif., 17–19 October 1997.
  22. A. A. Sawchuk, “Optoelectronic memory applications for VCSEL-based smart pixels,” in Proceedings, IEEE Lasers and Electro-Optics Society 1997 Annual Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1997), pp. 149–150.
  23. A. V. Krishnamoorthy, R. G. Rozier, J. E. Ford, and F. E. Kiamilev, “Demonstration of a CMOS static RAM chip with high-speed optical read and write,” in Spatial Light Modulators, G. Burdge and S. Esener, eds., Vol. 14 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 23–26.
  24. F. E. Kiamilev and R. G. Rozier, “Design of optoelectronic-VLSI ICs for optically accessed SRAMs,” in Spatial Light Modulators, G. Burdge and S. Esener, eds., Vol. 14 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 11–13.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited