OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 11 — Apr. 10, 1999
  • pp: 2309–2318

Synchronous Amplitude and Time Control for an Optimum Dynamic Range Variable Photonic Delay Line

Nabeel A. Riza and Nicholas Madamopoulos  »View Author Affiliations

Applied Optics, Vol. 38, Issue 11, pp. 2309-2318 (1999)

View Full Text Article

Acrobat PDF (186 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A synchronous-amplitude-controlled and time-delay-controlled photonic controller for phased-array antenna applications is proposed and demonstrated. Amplitude control is based on a variable optical attenuator system that operates in synchronism with the photonic delay line (PDL). This amplitude control system can provide both the signal calibration for the different PDL channels and settings required for driving the antenna elements of a phased-array radar and the optimum optical power levels that impinge on the photodetector for optimum fiber-optic-link performance. Various variable amplitude control modules based on ferroelectric liquid crystals, polymer-dispersed liquid crystals, and photoconductive devices are proposed. We show that the dynamic range loss due to a switched-PDL inherent structure loss can be compensated when we control the optical power from the laser, using the synchronous optical attenuation system. For the first time to our knowledge, full dynamic range loss compensation is demonstrated for an external-modulation-fed 3-bit switched PDL with a structure optical insertion loss of 5.5 dB. A compression dynamic range of 158 dB·Hz was measured at 6 GHz, and a spurious free dynamic range of 111 dB·Hz<sup>2/3</sup> was estimated. Feasibility of the dynamic range compensation technique for multichannel, higher-insertion-loss PDL systems is discussed.

© 1999 Optical Society of America

OCIS Codes
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(230.3720) Optical devices : Liquid-crystal devices
(280.5110) Remote sensing and sensors : Phased-array radar
(350.4010) Other areas of optics : Microwaves

Nabeel A. Riza and Nicholas Madamopoulos, "Synchronous Amplitude and Time Control for an Optimum Dynamic Range Variable Photonic Delay Line," Appl. Opt. 38, 2309-2318 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. N. A. Riza, ed., Selected Papers on Photonic Control Systems for Phased Array Antennas, Vol. MS136 of SPIE Milestone Series (SPIE Press, Bellingham, Wash., 1997).
  2. N. A. Riza and N. Madamopoulos, “Characterization of a FLC-based time delay unit for phased array antennas,” J. Lightwave Technol. 15, 1088–1094 (1997).
  3. N. Madamopoulos and N. A. Riza, “Switched photonic delay line for phased array antenna control using externally modulated microwave fiber-optic link,” in Optical Technology for Microwave Applications, A. Goutzoulis, ed., Proc. SPIE 3160, 45–54 (1997).
  4. E. Ackerman, C. Cox, and N. A. Riza, Eds., Selected Papers on Analog Fiber-Optic Links, Vol. MS149 of SPIE Milestone Series (SPIE Press, Bellingham, Wash., 1998).
  5. A. S. Daryoush, E. Ackerman, N. R. Samant, S. Wanuga, and D. Kasemset, “Interfaces for high-speed fiber-optic links: analysis and experiment,” IEEE Trans. Microwave Theory Tech. 39, 2031–2044 (1991).
  6. C. Cox III, G. E. Betts, and L. M. Johnson, “An analytic and experimental comparison of direct and external modulation in analog fiber-optic links,” IEEE Trans. Microwave Theory Tech. 38, 501–509 (1990).
  7. C. Cox III, E. Ackerman, R. Helkey, and G. E. Betts, “Techniques and performance of intensity-modulation direct-detection analog optical links,” IEEE Trans. Microwave Theory Tech. 45, 1375–1383 (1997).
  8. G. E. Betts, C. H. Cox, and K. G. Ray, “20 GHz optical analog link using an external modulator,” IEEE Photonics Technol. Lett. 2, 923–925 (1990).
  9. E. Ackerman, S. Wanuga, D. Kasemset, A. S. Daryoush, and N. R. Samant, “Maximum dynamic range operation of microwave external modulation fiber-optic link,” IEEE Trans. Microwave Theory Tech. 41, 1299–1306 (1993).
  10. K. J. Williams, L. T. Nichols, and R. D. Esman, “Photodetector nonlinearity limitations on a high-dynamic range 3 GHz fiber-optic link,” J. Lightwave Technol. 16, 192–199 (1998).
  11. A. M. Yurek, S. W. Merritt, and G. Drake, “Determining the cascade parameters of externally modulated links,” Microwave J. 38, 80–86 (1995).
  12. N. Madamopoulos and N. A. Riza, “Adaptable-delay balanced-loss binary photonic delay line architectures using polarization switching,” Opt. Commun. 152, 135–143 (1998).
  13. L. Xu, R. Taylor, and S. R. Forrest, “True time-delay phased-array antenna feed system based on optical heterodyne techniques,” IEEE Photonics Technol. Lett. 8, 160–162 (1996).
  14. W. W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
  15. L. Cardone, “Ultra-wideband microwave beamforming technique,” Microwave J. 28, 121–131 (1985).
  16. A. P. Goutzoulis, D. K. Davies, and J. M. Zomp, “Hybrid electronic fiber optic wavelength-multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
  17. H. Zmuda, R. A. Soref, P. Payson, S. Johns, and E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photonics Technol. Lett. 9, 241–243 (1997).
  18. D. Dolfi, F. Michel-Gabriel, S. Bann, and J. P. Huignard, “Two-dimensional optical architecture for time-delay beam forming in a phased-array antenna,” Opt. Lett. 16, 255–257 (1991).
  19. R. F. Mathis, W. L. Floyd, and S. A. Pappert, “High performance fiber optic delay line,” Proceedings of the Seventh Annual DARPA Symposium on Photonic Systems for Antenna Applications (PSAA-7), M. L. Van Blaricum, Conference Chair, C. H. Cox III, Program Chair (Defense Advanced Research Projects Agency, Washington, D.C., 1997), pp. 9–14.
  20. Optical Variable Attenuator Module, OVA-610, Product Specifications (Santec Corporation, Aichi, Japan, 1998).
  21. N. A. Riza, “Advances in three dimensional reversible photonic modules for phased array control,” in Photonics and Radio Frequency, B. M. Hendrickson, ed., Proc. SPIE 2844, 274–2283 (1996).
  22. S. E. Broomfield, M. A. A. Neil, E. G. S. Paige, and G. G. Yang, “Programmable binary phase-only optical device based on ferroelectric liquid crystal SLM,” Electron. Lett. 28, 26–27 (1992).
  23. M. O. Freeman, T. A. Brown, and D. M. Walba, “Quantized complex ferroelectric liquid crystal spatial light modulators,” Appl. Opt. 31, 3917–3929 (1992).
  24. J. Kim and N. A. Riza, “Fiber array optical coupling design issues for photonic beamformers,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE 2754, 271–282 (1996).
  25. N. A. Riza, and S. Yuan, “Demonstration of a liquid-crystal adaptive alignment tweeker for high-speed infrared band fiber-fed free-space systems,” Opt. Eng. 37, 1876–1880 (1998).
  26. V. T. Tondiglia, L. V. Natarajan, R. L. Sutherland, T. J. Bunning, and W. W. Adams, “Volume holographic image storage and electro-optical readout in a polymer-dispersed liquid-crystal film,” Opt. Lett. 20, 1325–1327 (1995).
  27. N. A. Riza and S. E. Saddow, “N-bit optically controlled microwave signal attenuator using the photoconductive effect,” in Optical Technology for Microwave Applications VII, A. P. Goutzoulis, ed., Proc. SPIE 2560, 9–18 (1995).
  28. N. A. Riza and S. E. Saddow, “Optically controlled photoconductive N-bit switched microwave signal attenuator,” IEEE Microwave Guid. Wave Lett. 5, 448–450 (1995).
  29. Designer’s Guide to External Modulation, (Uniphase Telecommunications Products, Electro-Optic Products Division, Bloomfield, Conn., 1997).
  30. B. H. Kolner and D. W. Dolfi, “Intermodulation distortion and compression is an integrated electro-optic modulator,” Appl. Opt. 26, 3676–3680 (1987).
  31. H. Goldberg, “Some notes on noise figure,” Proc. IRE 36, 1205–1214 (1948).
  32. C. Cox, E. Ackerman, and G. Betts, “Relationship between gain and noise figure of an optical analog link,” in IEEE Microwave Theory and Techniques Society Symposium Digest, R. G. Ranson, ed. (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 1551–1554.
  33. K. Williams, R. Esman, and M. Dagenais, “Nonlinearities in p-i-n microwave photodetectors,” IEEE Photonics Technol. Lett. 14, 94–96 (1996).
  34. M. L. Farwell, W. S. C. Chang, and D. R. Huber, “Increased linear dynamic range by low biasing the Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 5, 779–782 (1993).
  35. R. D. Esman and K. J. Williams, “Wideband efficiency improvement of fiber optic systems by carrier subtraction,” IEEE Photonics Technol. Lett. 7, 218–220 (1995).
  36. G. Drake and B. Merritt, “High-dynamic range applications of integrated optic modulators,” in Optical Technology for Microwave Applications VII, A. P. Goutzoulis, ed., Proc. SPIE 2560, 2–8 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited