OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 12 — Apr. 20, 1999
  • pp: 2346–2357

Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory

Detlef Müller, Ulla Wandinger, and Albert Ansmann  »View Author Affiliations


Applied Optics, Vol. 38, Issue 12, pp. 2346-2357 (1999)
http://dx.doi.org/10.1364/AO.38.002346


View Full Text Article

Enhanced HTML    Acrobat PDF (267 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method is proposed that permits one to retrieve physical parameters of tropospheric particle size distributions, e.g., effective radius, volume, surface-area, and number concentrations, as well as the mean complex refractive index on a routine basis from backscatter and extinction coefficients at multiple wavelengths. The optical data in terms of vertical profiles are derived from multiple-wavelength lidar measurements at 355, 400, 532, 710, 800, and 1064 nm for backscatter data and 355 and 532 nm for extinction data. The algorithm is based on the concept of inversion with regularization. Regularization is performed by generalized cross-validation. This method does not require knowledge of the shape of the particle size distribution and can handle measurement errors of the order of 20%. It is shown that at least two extinction data are necessary to retrieve the particle parameters to an acceptable accuracy. Simulations with monomodal and bimodal logarithmic-normal size distributions show that it is possible to derive effective radius, volume, and surface-area concentrations to an accuracy of ±50%, the real part of the complex refractive index to ±0.05, and the imaginary part to ±50%. Number concentrations may have errors larger than ±50%.

© 1999 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(100.0100) Image processing : Image processing
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(290.0290) Scattering : Scattering

History
Original Manuscript: July 2, 1998
Revised Manuscript: November 6, 1998
Published: April 20, 1999

Citation
Detlef Müller, Ulla Wandinger, and Albert Ansmann, "Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory," Appl. Opt. 38, 2346-2357 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-12-2346


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992). [CrossRef] [PubMed]
  2. J. T. Kiel, B. P. Briegleb, “The relative roles of sulfate aerosols and greenhouse gases,” Science 260, 311–314 (1993). [CrossRef]
  3. J. E. Penner, R. E. Dickinson, C. A. O’Neill, “Effects of aerosols from biomass burning on the global radiation budget,” Science 256, 1432–1434 (1992). [CrossRef] [PubMed]
  4. R. J. Charlson, J. Heintzenberg, eds., Aerosol Forcing of Climate (Wiley, Chichester, 1995).
  5. T. R. Karl, P. D. Jones, R. W. Knight, G. Kukla, N. Plummer, V. Razovayev, K. P. Gallo, J. Lindseay, R. J. Charlson, T. C. Peterson, “A new perspective on recent global warming,” Bull. Am. Meteorol. Soc. 74, 1007–1023 (1993). [CrossRef]
  6. P. V. Hobbs, B. J. Huebert, eds., “Atmospheric aerosols. A new focus of the International Global Atmospheric Chemistry Project (IGAC),” (IGAC Core Project Office, Massachusetts Institute of Technology, Cambridge, Mass., 1996).
  7. J. Heintzenberg, H.-F. Graf, R. J. Charlson, P. Warneck, “Climate forcing and the physico-chemical life cycle of the atmospheric aerosol—Why do we need an integrated interdisciplinary global research programme?” Contrib. Atmos. Phys. 69, No. 2, 261–271 (1996).
  8. P. K. Quinn, T. L. Anderson, T. S. Bates, R. Dlugi, J. Heintzenberg, W. von Hoyningen-Huene, M. Kulmala, P. B. Russell, E. Swietlicki, “Closure in tropospheric aerosol-climate research: a review and future needs for addressing aerosol direct shortwave radiative forcing,” Contrib. Atmos. Phys. 69, No. 4, 547–577 (1996).
  9. D. Müller, D. Althausen, U. Wandinger, A. Ansmann, “Multiple-wavelength aerosol lidar,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996).
  10. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992). [CrossRef] [PubMed]
  11. D. L. Phillips, “A technique for the numerical solution of certain integral equations of the first kind,” J. Assoc. Comput. Mach. 9, 84–97 (1962). [CrossRef]
  12. S. Twomey, “The application of numerical filtering to the solution of integral equations encountered in indirect sensing measurements,” J. Franklin Inst. 279, 95–109 (1965). [CrossRef]
  13. A. N. Tikhonov, V. Y. Arsenin, eds., Solution of Ill-Posed Problems (Wiley, New York, 1977).
  14. S. Twomey, ed., Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements (Elsevier, Amsterdam, 1977).
  15. V. E. Zuev, I. E. Naats, eds., Inverse Problems of Lidar Sensing of the Atmosphere (Springer-Verlag, Berlin, 1983). [CrossRef]
  16. P. C. Sabatier, “Basic concepts and methods of inverse problems,” in Basic Methods of Tomography and Inverse Problems, P. C. Sabatier, ed. (Hilger, Bristol, UK, 1987).
  17. A. K. Louis, ed., Inverse und schlecht gestellte Probleme (Teubner, Stuttgart, 1989). [CrossRef]
  18. J. Hadamard, “Sur les problémes aux derivees parielies et leur signification physique,” Bull. Univ. Princeton49–52 (1902).
  19. M. A. Box, B. H. J. McKellar, “Analytic inversion of multispectral extinction data in the anomalous diffraction approximation,” Opt. Lett. 3, 91–93 (1978). [CrossRef] [PubMed]
  20. A. L. Fymat, “Analytical inversions in remote sensing of particle size distributions. 1: Multispectral extinctions in the anomalous diffraction approximation,” Appl. Opt. 17, 1675–1676 (1978).
  21. J. G. McWhirther, E. R. Pike, “On the numerical inversion of the Laplace transform and similar Fredholm integral equations of the first kind,” J. Phys. A 11, 1729–1745 (1978). [CrossRef]
  22. M. A. Box, B. H. J. McKellar, “Relationship between two analytic inversion formulas for multispectral extinction data,” Appl. Opt. 18, 3599–3601 (1979). [CrossRef] [PubMed]
  23. C. B. Smith, “Inversion of the anomalous diffraction approximation for variable complex index of refraction near unity,” Appl. Opt. 21, 3363–3366 (1982). [CrossRef] [PubMed]
  24. C. D. Capps, R. L. Henning, G. M. Hess, “Analytic inversion of remote-sensing data,” Appl. Opt. 21, 3581–3587 (1982). [CrossRef] [PubMed]
  25. J. D. Klett, “Anomalous diffraction model for inversion of multispectral extinction data including absorption effects,” Appl. Opt. 23, 4499–4508 (1984). [CrossRef] [PubMed]
  26. M. Bertero, C. De Mol, E. R. Pike, “Particle size distribution from spectral turbidity: a singular-system analysis,” Inverse Problems 2, 247–258 (1986). [CrossRef]
  27. G. Viera, M. A. Box, “Information content analysis of aerosol remote sensing experiments using singular function theory. 1: Extinction measurements,” Appl. Opt. 26, 1312–1327 (1987). [CrossRef] [PubMed]
  28. A. Ben-David, B. M. Herman, J. A. Reagan, “Inverse problem and the pseudoempirical orthogonal function method of solution. 1: Theory,” Appl. Opt. 27, 1235–1242 (1988). [CrossRef] [PubMed]
  29. A. Ben-David, B. M. Herman, J. A. Reagan, “Inverse problem and the pseudoempirical orthogonal function method of solution. 2: Use,” Appl. Opt. 27, 1243–1254 (1988). [CrossRef] [PubMed]
  30. B. P. Curry, “Constrained eigenfunction method for the inversion of remote sensing data: application to particle size determination from light scattering measurements,” Appl. Opt. 28, 1345–1355 (1989). [CrossRef] [PubMed]
  31. G. P. Box, K. M. Sealey, M. A. Box, “Inversion of Mie extinction measurements using analytic eigenfunction theory,” J. Atmos. Sci. 49, 2074–2081 (1992). [CrossRef]
  32. B. T. Evans, G. R. Fournier, “Approximations of polydispersed extinction,” Appl. Opt. 35, 3281–3285 (1996). [CrossRef] [PubMed]
  33. G. P. Box, “Effects of smoothing and measurement-wavelength range on the accuracy of analytic eigenfunction inversions,” Appl. Opt. 34, 7787–7792 (1995). [CrossRef] [PubMed]
  34. D. P. Donovan, A. I. Carswell, “Retrieval of stratospheric aerosol physical properties using multiwavelength lidar backscatter and extinction measurements,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996).
  35. J. Wang, F. R. Hallett, “Spherical particle size determination by analytical inversion of the UV–visible–NIR extinction spectrum,” Appl. Opt. 35, 193–197 (1996). [CrossRef] [PubMed]
  36. D. P. Donovan, A. I. Carswell, “Principal component analysis applied to multiwavelength lidar aerosol backscatter and extinction measurements,” Appl. Opt. 36, 9406–9424 (1997). [CrossRef]
  37. G. Backus, F. Gilbert, “The resolving power of gross earth data,” Geophys. J. R. Astron. Soc. 266, 169–205 (1968). [CrossRef]
  38. G. Backus, F. Gilbert, “Uniqueness of inaccurate gross earth data,” Philos. Trans. R. Soc. London Ser. A 266, 123–192 (1970). [CrossRef]
  39. E. R. Westwater, A. Cohen, “Application of Backus–Gilbert inversion technique to determination of aerosol size distributions from optical scattering measurements,” Appl. Opt. 12, 1341–1348 (1973). [CrossRef]
  40. S. Twomey, “On the numerical solution of Fredholm integral equations of the first kind by inversion of linear system produced by quadrature,” Assoc. Comput. Mach. 10, 97–101 (1963). [CrossRef]
  41. M. T. Chahine, “Determination of the temperature profile in an atmosphere from its outgoing radiance,” J. Opt. Soc. Am. 58, 1634–1637 (1968). [CrossRef]
  42. R. J. Hanson, “A numerical method for solving Fredholm integral equations of the first kind using singular values,” SIAM J. Numer. Anal. 8, 616–622 (1971). [CrossRef]
  43. J. Heintzenberg, H. Müller, H. Quenzel, E. Thomalla, “Information content of optical data with respect to aerosol properties: numerical studies with a randomized minimization-search-technique inversion algorithm,” Appl. Opt. 20, 1308–1315 (1981). [CrossRef] [PubMed]
  44. H. Müller, “Die Bestimmbarkeit der atmosphärischen Aerosolgrößenverteilung mit Hilfe eines 4-Wellenlängen-Lidars,” Ph.D. dissertation (Wissenschaftliche Mitteilung Nr. 44, Universität München, München, Germany, 1981).
  45. E. F. Maher, N. M. Laird, “EM algorithm reconstruction of particle size distributions from diffusion battery data,” J. Aerosol Sci. 16, 557–570 (1985). [CrossRef]
  46. P. Rairoux, “Mesures par lidar de la pollution atmospherique et des parametres meteorologiques,” Ph.D. dissertation (These 955, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland, 1991).
  47. J. Kolenda, B. Mielke, P. Rairoux, B. Stein, D. Weidauer, J. P. Wolf, L. Wöste, F. Castagnoli, M. Del Guasta, M. Morandi, V. M. Sacco, L. Stefanutti, V. Venturi, L. Zuccagnoli, “Aerosol size distribution measurements using a multispectral lidar-system,” in Lidar for Remote Sensing, R. J. Becherer, R. M. Hardesty, J. P. Meyzonette, eds., Proc. SPIE1714, 208–219 (1992). [CrossRef]
  48. C. Dellago, H. Horvath, “On the accuracy of the size distribution information obtained from light extinction and scattering measurements—I. Basic considerations and models,” J. Aerosol Sci. 24, 129–141 (1993). [CrossRef]
  49. H. Horvath, C. Dellago, “On the accuracy of the size distribution information obtained from light extinction and scattering measurements—II. Case studies,” J. Aerosol Sci. 24, 143–154 (1993). [CrossRef]
  50. W. von Hoyningen-Huene, M. Wendisch, “Variability of aerosol optical parameters by advective processes,” Atmos. Environ. 28, 923–933 (1994). [CrossRef]
  51. G. Beyerle, R. Neuber, O. Schrems, F. Wittrock, B. Knudsen, “Multiwavelength lidar measurements of stratospheric aerosols above Spitsbergen during winter 1992/93,” Geophys. Res. Lett. 21, 57–60 (1994). [CrossRef]
  52. G. Feingold, C. J. Grund, “Feasibility of using multiwavelength lidar measurements to measure cloud condensation nuclei,” J. Atmos. Oceanic Technol. 11, 543–1558 (1994). [CrossRef]
  53. B. Stein, M. Del Guasta, J. Kolenda, M. Morandi, P. Rairoux, L. Stefanutti, J. P. Wolf, L. Wöste, “Stratospheric aerosol size distribution from multispectral lidar measurements at Sodankylä during EASOE,” Geophys. Res. Lett. 21, 1311–1314 (1994). [CrossRef]
  54. M. Wendisch, W. von Hoyningen-Huene, “Possibility of refractive index determination of atmospheric aerosol particles by ground-based solar extinction and scattering measurements,” Atmos. Environ. 28, 785–792 (1994). [CrossRef]
  55. U. Wandinger, A. Ansmann, J. Reichardt, T. Deshler, “Determination of stratospheric aerosol microphysical properties from independent extinction and backscattering measurements with a Raman lidar,” Appl. Opt. 34, 8315–8329 (1995). [CrossRef] [PubMed]
  56. F. Ferri, A. Bassini, E. Paganini, “Modified version of the Chahine algorithm to invert spectral extinction data for particle sizing,” Appl. Opt. 34, 5829–5839 (1995). [CrossRef] [PubMed]
  57. F. Sun, J. W. L. Lewis, “Simplex deconvolutions of particle-size distribution functions from optical measurements,” Appl. Opt. 34, 8437–8446 (1995). [CrossRef] [PubMed]
  58. M. J. Post, “A graphical technique for retrieving size distribution parameters from multiple measurements: visualization and error analysis,” J. Atmos. Oceanic Technol. 13, 863–873 (1996). [CrossRef]
  59. L. Landweber, “An iteration formula for Fredholm integral equations of the first kind,” Am. J. Math. 73, 615–624 (1975). [CrossRef]
  60. S. Twomey, “Comparison of constrained linear inversion and an iterative nonlinear algorithm applied to the indirect estimation of particle size distribution,” J. Comput. Phys. 18, 188–200 (1975). [CrossRef]
  61. O. V. Dubovik, T. V. Lapyonok, S. L. Oshchepkov, “Improved technique for data inversion: optical sizing of multicomponent aerosols,” Appl. Opt. 34, 8422–8436 (1995). [CrossRef] [PubMed]
  62. R. Lattes, J. L. Lions, eds., The Method of Quasi-reversibility—Applications to Partial Differential Equations (Elsevier, New York, 1969).
  63. M. D. King, D. M. Byrne, B. M. Herman, J. A. Reagan, “Aerosol size distributions obtained by inversion of spectral optical depth measurements,” J. Atmos. Sci. 35, 2153–2167 (1978). [CrossRef]
  64. V. V. Veretennikov, V. S. Kozlov, I. E. Naats, V. Ya. Fadeev, “Optical studies of smoke aerosols: an inversion method and its applications,” Opt. Lett. 4, 411–413 (1979). [CrossRef] [PubMed]
  65. A. P. Ivanov, F. P. Osipenko, A. P. Chaykovskiy, V. N. Shcherbakov, “Study of the aerosol optical properties and microstructure by the method of multiwave sounding,” Izv. Atmos. Oceanic Phys. 22, 633–639 (1986).
  66. P. Qing, H. Nakane, Y. Sasano, S. Kitamura, “Numerical simulation of the retrieval of aerosol size distribution from multiwavelength laser radar measurements,” Appl. Opt. 28, 5259–5265 (1989). [CrossRef] [PubMed]
  67. J. K. Wolfenbarger, J. H. Seinfeld, “Inversion of aerosol size distribution data,” J. Aerosol Sci. 21, 227–247 (1990). [CrossRef]
  68. J. K. Wolfenbarger, J. H. Seinfeld, “Regularized solutions to the aerosol data inversion problem,” SIAM J. Sci. Stat. Comput. 12, 342–361 (1991). [CrossRef]
  69. U. Amato, M. F. Carfora, V. Cuomo, C. Serio, “Objective algorithms for the aerosol problem,” Appl. Opt. 34, 5442–5452 (1995). [CrossRef] [PubMed]
  70. A. N. Tikhonov, “Solution of incorrectly formulated problems and the regularization method,” Sov. Math. Dokl. 5, 1035–1038 (1963).
  71. R. J. Hanson, J. L. Phillips, “An adaptive numerical method for solving linear Fredholm integral equations of the first kind,” Numer. Math. 24, 291–307 (1975). [CrossRef]
  72. D. W. Cooper, L. A. Spielmann, “Data inversion using nonlinear programming with physical constraints: aerosol size distribution measurement by impactors,” Atmos. Environ. 10, 723–729 (1976). [CrossRef]
  73. S. K. Friedlander, ed., Smoke, Dust and Haze: Fundamentals of Aerosol Behavior (Wiley, New York, 1977).
  74. E. T. Jaynes, ed., Papers on Probability, Statistics and Statistical Physics (Synthese Library, Kluwer Academic, Dordrecht, The Netherlands, 1983).
  75. E. Yee, “On the interpretation of diffusion battery data,” J. Aerosol Sci. 20, 797–811 (1989). [CrossRef]
  76. U. Amato, W. Hughes, “Maximum entropy regularization of Fredholm integral equations of the first kind,” Inverse Problems 7, 793–808 (1991). [CrossRef]
  77. P. Paatero, T. Raunemaa, R. L. Dod, “Composition characteristics of carbonaceous particle samples, analyzed by EVE deconvolution method,” J. Aerosol Sci. 19, 1223–1226 (1988). [CrossRef]
  78. P. Paatero, “Extreme value estimation, a method for regularizing ill-posed inversion problems,” in Ill-posed Problems in Natural Sciences, Proceedings of the International Conference in Moscow, August 1991, A. N. Tikhonov, ed. (VSP, Utrecht, The Netherlands, 1991).
  79. C. Böckmann, J. Niebsch, “A mollifier method for aerosol size distribution,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996).
  80. D. Müller, “Entwicklung eines Inversionsalgorithmus zur Bestimmung mikrophysikalischer Partikelparameter des atmosphärischen Aerosols aus koḿbinierten Mehrwellenlängen- und Raman-Lidarmessungen,” Ph.D. dissertation (Universität Leipzig, Leipzig, Germany, 1997).
  81. G. H. Golub, M. Heath, G. Wahba, “Generalized cross-validation as a method for choosing a good ridge parameter,” Technometrics 21, 215–223 (1979). [CrossRef]
  82. P. Craven, G. Wahba, “Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation,” Numer. Math. 31, 377–403 (1979). [CrossRef]
  83. K. S. Shifrin, I. G. Zolotov, “Spectral attenuation and aerosol particle size distribution,” Appl. Opt. 35, 2114–2124 (1996). [CrossRef] [PubMed]
  84. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  85. F. O’Sullivan, “A statistical perspective on ill-posed inverse problems,” Stat. Sci. 1, 502–527 (1986). [CrossRef]
  86. S.-Å. Gustafson, “Regularizing a Volterra integral equation problem by means of convex programming,” (University of Stavanger, Stavanger, Norway, 1991).
  87. D. Nychka, G. Wahba, S. Goldfarb, T. Pugh, “Cross-validated spline methods for the estimation of three-dimensional tumor size distributions from observations on two-dimensional cross sections,” J. Am. Stat. Soc. 79, 832–846 (1984). [CrossRef]
  88. V. S. Bashurova, K. P. Koutzenogil, A. Y. Pusep, N. V. Shokirev, “Determination of atmospheric aerosol size distribution functions from screen diffusion battery data: mathematical aspects,” J. Aerosol. Sci. 22, 373–388 (1991). [CrossRef]
  89. D. Lesnic, L. Elliot, D. B. Ingham, “An inversion method for the determination of the particle size distribution from diffusion battery measurements,” J. Aerosol Sci. 26, 797–812 (1995). [CrossRef]
  90. R. R. Picard, R. D. Cook, “Cross-validation of regression models,” J. Am. Stat. Assoc. 79, 575–583 (1984). [CrossRef]
  91. A. R. Davies, R. S. Anderssen, “Optimization in the regularization of ill-posed problems,” (Centre for Mathematical Analysis, The Australian National University, Canberra, Australia, 1985).
  92. T. Lyche, K. Mørken, “A data reduction strategy for splines with applications to the approximation of functions and data,” J. Numer. Anal. 8, 185–208 (1988). [CrossRef]
  93. G. Wahba, Department of Statistics, University of Wisconsin–Madison, Madison, Wisc. 53706-1685 (personal communication, 1996).
  94. P. Paatero, Department of Physics, University of Helsinki, SF-00014 Helsinki, Finland (personal communication, 1996).
  95. D. M. Allen, “The relationship between variable selection and data augmentation and a method for prediction,” Technometrics 16, 125–127 (1974). [CrossRef]
  96. A. S. Householder, ed., The Theory of Matrices in Numerical Analysis (Blaisdell, New York, 1964).
  97. S. Kitamura, P. Qing, “Neural network application to solve Fredholm integral equations of the first kind,” in Proceedings of International Joint Conference on Neural Networks, Washington, D.C., 18–22 June 1989 (Institute of Electrical and Electronic Engineers, Service Center, Piscataway, N.J., 1989), p. 589.
  98. A. Ishimaru, R. J. Marks, L. Tsang, C. M. Lam, D. C. Park, S. Kitamura, “Particle-size distribution determination using optical sensing and neural networks,” Opt. Lett. 15, 1221–1223 (1990). [CrossRef] [PubMed]
  99. M. I. Mishchenko, L. D. Travis, D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996). [CrossRef]
  100. T. Rother, German Remote Sensing Data Center, German Aerospace Research Establishment, D-17235 Neustrelitz, Germany (personal communication, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited