OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 12 — Apr. 20, 1999
  • pp: 2358–2368

Microphysical Particle Parameters from Extinction and Backscatter Lidar Data by Inversion With Regularization: Simulation

Detlef Müller, Ulla Wandinger, and Albert Ansmann  »View Author Affiliations

Applied Optics, Vol. 38, Issue 12, pp. 2358-2368 (1999)

View Full Text Article

Acrobat PDF (395 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A sensitivity study with an inversion scheme that permits one to retrieve physical parameters of tropospheric particle size distributions, e.g., effective radius, volume, surface-area, and number concentrations, as well as the mean complex refractive index from backscatter and extinction coefficients at multiple wavelengths is presented. The optical data for the analysis are derived from Mie-scattering calculations for monomodal and bimodal logarithmic-normal distributions in the particle size range between 0.01 and 10 μm. The complex refractive index is taken between 1.33 and 1.8 in the real part and between 0 and 0.1 in the imaginary part. The choice of these parameters takes account of properties of optically active atmospheric particles. The wavelengths were chosen at 355, 400, 532, 710, 800, and 1064 nm for the backscatter and at 355 and 532 nm for the extinction data, which are the available wavelengths of the two lidar systems at the Institute for Tropospheric Research. Cases of erroneous optical data of the order of as much as 20%, an unknown refractive index, which may also be wavelength and size dependent, as well as the a priori unknown modality of the particle size distribution were considered. It is shown that both extinction channels are necessary for determining the above-mentioned parameters within reasonable limits, i.e., effective radius, surface-area, and volume concentrations to an accuracy of ∓50%, the real part of the complex refractive index to ∓0.1, and the imaginary part to ∓50%. The number concentration may have errors larger than 50%. The overall performance of the inversion scheme permits the evaluation of experimental data on a routine basis.

© 1999 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(100.0100) Image processing : Image processing
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(290.0290) Scattering : Scattering

Detlef Müller, Ulla Wandinger, and Albert Ansmann, "Microphysical Particle Parameters from Extinction and Backscatter Lidar Data by Inversion With Regularization: Simulation," Appl. Opt. 38, 2358-2368 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion by regularization: theory,” Appl. Opt. 38, 2346–2357 (1999).
  2. D. Müller, “Entwicklung eines Inversionsalgorithmus zur Bestimmung mikrophysikalischer Partikelparameter des atmosphärischen Aerosols aus kombinierten Mehrwellenlängen- und Raman-Lidarmessungen,” Ph.D. dissertation (Universität Leipzig, Leipzig, Germany, 1997).
  3. G. H. Golub, M. Heath, and G. Wahba, “Generalized cross-validation as a method for choosing a good ridge parameter,” Technometrics 21, 215–223 (1979).
  4. P. Craven and G. Wahba, “Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation,” Numer. Math. 31, 377–403 (1979).
  5. J. Heintzenberg, H. Müller, H. Quenzel, and E. Thomalla, “Information content of optical data with respect to aerosol properties: numerical studies with a randomized minimization-search-technique inversion algorithm,” Appl. Opt. 20, 1308–1315 (1981).
  6. H. Müller, “Die Bestimmbarkeit der atmosphärischen Aerosolgrössenverteilung mit Hilfe eines 4-Wellenlängen-Lidars,” Ph.D. dissertation, Wissenschaftliche Mitteilung 44 (Universität München, München, Germany, 1981).
  7. P. Qing, H. Nakane, Y. Sasano, and S. Kitamura, “Numerical simulation of the retrieval of aerosol size distribution from multiwavelength laser radar measurements,” Appl. Opt. 28, 5259–5265 (1989).
  8. P. Rairoux, “Mesures par lidar de la pollution atmospherique et des parametres meteorologiques,” These 955 (Ecole Polytechnique Federale De Lausanne, Lausanne, Switzerland, 1991).
  9. J. Kolenda, B. Mielke, P. Rairoux, B. Stein, D. Weidauer, J. P. Wolf, L. Wöste, F. Castagnoli, M. Del Guasta, M. Morandi, V. M. Sacco, L. Stefanutti, V. Venturi, and L. Zuccagnoli, “Aerosol size distribution measurements using a multispectral lidar system,” in Lidar for Remote Sensing, R. J. Becherer and C. Werner, eds., Proc. SPIE 1714, 208–219 (1992).
  10. G. Beyerle, R. Neuber, O. Schrems, F. Wittrock, and B. Knudsen, “Multiwavelength lidar measurements of stratospheric aerosols above Spitsbergen during winter 1992/93,” Geophys. Res. Lett. 21, 57–60 (1994).
  11. B. Stein, M. Del Guasta, J. Kolenda, M. Morandi, P. Rairoux, L. Stefanutti, J. P. Wolf, and L. Wöste, “Stratospheric aerosol size distribution from multispectral lidar measurements at Sodankylä during EASOE,” Geophys. Res. Lett. 21, 1311–1314 (1994).
  12. U. Wandinger, A. Ansmann, J. Reichardt, and T. Deshler, “Determination of stratospheric aerosol microphysical properties from independent extinction and backscattering measurements with a Raman lidar,” Appl. Opt. 34, 8315–8329 (1995).
  13. C. Böckmann and J. Niebsch, “A mollifier method for aerosol size distribution,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, and U. Wandinger, eds. (Springer-Verlag, Berlin, 1996).
  14. D. P. Donovan and A. I. Carswell, “Retrieval of stratospheric aerosol physical properties using multiwavelength lidar backscatter and extinction measurements,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, and U. Wandinger, eds. (Springer-Verlag, Berlin, 1996).
  15. M. J. Post, “A graphical technique for retrieving size distribution parameters from multiple measurements: visualization and error analysis,” J. Atmos. Oceanic Technol. 13, 863–873 (1996).
  16. D. P. Donovan and A. I. Carswell, “Principal component analysis applied to multiwavelength lidar aerosol backscatter and extinction measurements,” Appl. Opt. 36, 9406–9424 (1997).
  17. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  18. W. C. Hinds, Aerosol Technology (Wiley, New York, 1982).
  19. E. M. Patterson, “Atmospheric extinction between 0.55 μm and 10.6 μm due to soil-derived aerosols,” Appl. Opt. 16, 2414–2418 (1977).
  20. E. M. Patterson, D. A. Gillette, and B. H. Stockton, “Complex index of refraction between 300 and 700 nm for Saharan aerosols,” J. Geophys. Res. 82, 3153–3160 (1977).
  21. E. M. Patterson and B. T. Marshall, “Diffuse reflectance and diffuse transmission measurements of aerosol absorption at the First International Workshop on Light Absorption by Aerosol Particles,” Appl. Opt. 21, 387–393 (1982).
  22. E. M. Patterson and C. K. McMahon, “Absorption characteristics of forest fire particulate matter,” Atmos. Environ. 18, 2541–2551 (1984).
  23. C. V. Mathai and A. W. Harrison, “Estimation of atmospheric aerosol refractive index,” Atmos. Environ. 14, 1131–1135 (1980).
  24. J. D. Lindberg and J. B. Gillespie, “Relationship between particle size and imaginary refractive index in the atmospheric dust,” Appl. Opt. 16, 2628–2630 (1977).
  25. J. B. Gillespie and J. D. Lindberg, “Seasonal and geographic variations in imaginary refractive index of atmospheric particulate matter,” Appl. Opt. 31, 2107–2111 (1992).
  26. J. B. Gillespie and J. D. Lindberg, “Ultraviolet and visible imaginary refractive index of strongly absorbing atmospheric particulate matter,” Appl. Opt. 31, 2112–2115 (1992).
  27. J. D. Lindberg, R. E. Douglass, and D. M. Garvey, “Carbon and the optical properties of atmospheric dust,” Appl. Opt. 32, 6077–6086 (1993).
  28. Y. Sasano and E. V. Browell, “Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations,” Appl. Opt. 28, 1670–1679 (1989).
  29. C. Liu, “Humidity effect on the aerosol particle spectra in the atmospheric boundary layer,” J. Aerosol Sci. 26, 489–495 (1995).
  30. I. N. Tang and H. R. Munkelwitz, “Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance,” J. Geophys. Res. 99, 18,801–18,808 (1994).
  31. P. K. Koutsenogii and R. Jaenicke, “Number concentration and size distribution of atmospheric aerosol in Siberia,” J. Aerosol Sci. 25, 377–383 (1994).
  32. Y. J. Kaufman, A. Gitelson, A. Karnieli, E. Ganor, R. S. Fraser, T. Nakajima, S. Mattoo, and B. N. Holben, “Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements,” J. Geophys. Res. 99, 10,341–10,356 (1994).
  33. M. Tanaka, T. Hayasaka, and T. Nakajima, “Airborne measurements of optical properties of tropospheric aerosols over an urban area,” J. Meteorol. Soc. Jpn. 68, 335–345 (1990).
  34. T. Nakajima, M. Tanaka, and T. Yamauchi, “Retrieval of the optical properties of aerosols from aureole and extinction data,” Appl. Opt. 22, 2951–2959 (1983).
  35. R. G. Pinnick, G. Fernandez, E. Martinez-Andazola, B. D. Hinds, A. D. A. Hansen, and K. Fuller, “Aerosol in the arid Southwestern United States: Measurements of mass loading, volatility, size distribution, absorption characteristics, black carbon content, and vertical structure to 7 km above sea level,” J. Geophys. Res. 98, 2651–2666 (1994).
  36. I. S. Kristament, J. B. Liley, and M. J. Harvey, “Aerosol variability in the vertical in the Southwest Pacific,” J. Geophys. Res. 98, 7129–7139 (1994).
  37. D. S. Covert and J. Heintzenberg, “Size distribution and chemical properties of aerosol at Ny Ålesund, Svalbard,” Atmos. Environ. 27A, 2989–2997 (1993).
  38. R. F. Pueschel, J. M. Livingston, G. V. Ferry, and T. E. DeFelice, “Aerosol abundances and optical characteristics in the Pacific Basin free troposphere,” Atmos. Environ. 28, 951–960 (1994).
  39. T. Nakajima, T. Takamura, M. Yamano, M. Shiobara, T. Yamauchi, R. Goto, and K. Murai, “Consistency of aerosol size distributions inferred from measurements of solar radiation and aerosols,” J. Meteorol. Soc. Jpn. 64, 765–776 (1986).
  40. T. Hayasaka, T. Nakajima, and M. Tanaka, “The coarse particle aerosols in the free troposphere around Japan,” J. Geophys. Res. 95, 14,039–14,047 (1990).
  41. T. Nakajima, M. Tanaka, M. Yamano, M. Shiobara, K. Arao, and Y. Nakanishi, “Aerosol optical characteristics in the yellow sand events observed in May 1982 at Nagasaki—Part II. Models,” J. Meteorol. Soc. Jpn. 67, 279–291 (1989).
  42. S. Wen and W. I. Rose, “Retrieval of sizes and total masses of particles in volcanic clouds using AVHRR bands 4 and 5,” J. Geophys. Res. 99, 5421–5431 (1994).
  43. G. A. d’Almeida, P. Köppke, and E. P. Shettle, Atmospheric Aerosols, Global Climatology, and Radiative Characteristics (Deepak Publishing, Hampton, Va., 1991).
  44. P. Köppke, “Microphysical parameters of aerosols,” Ludwig-Maximilians-Universität München, Meteorologisches Institut, Theresienstrasse 37, 80333 München, Germany (personal communication, 1995).
  45. W. B. Grant, E. V. Browell, C. F. Butler, and G. D. Nowicki, “LITE measurements of biomass burning aerosols and comparisons with correlative airborne lidar measurements of multiple scattering in the planetary boundary layer,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, and U. Wandinger, eds. (Springer-Verlag, Berlin, 1996).
  46. P. Paatero, T. Raunemaa, and R. L. Dod, “Composition characteristics of carbonaceous particle samples, analyzed by EVE deconvolution method,” J. Aerosol Sci. 19, 1223–1226 (1988).
  47. P. Paatero, “Extreme value estimation, a method for regularizing ill-posed inversion problems,” in Ill-Posed Problems in Natural Sciences, Proceedings of the International Conference in Moscow, August 1991 (VSP, Utrecht, The Netherlands, 1991).
  48. L. Lederer, “Die Anwendbarkeit eines mittleren Brechungsindexes bei der Berechnung der optischen Eigenschaften eines Aerosolteilchengemisches,” Diploma thesis (Ludwig-Maximilians-Universität, München, Germany, 1981).
  49. D. Nychka, “Choosing a range for the amount of smoothing in nonparametric regression,” J. Am. Stat. Soc. 86, 653–664 (1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited