OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 12 — Apr. 20, 1999
  • pp: 2458–2462

Aluminum-Coated Hollow Glass Fibers for ArF-Excimer Laser Light Fabricated by Metallorganic Chemical-Vapor Deposition

Yuji Matsuura and Mitsunobu Miyagi  »View Author Affiliations

Applied Optics, Vol. 38, Issue 12, pp. 2458-2462 (1999)

View Full Text Article

Acrobat PDF (513 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A hollow fiber composed of a glass capillary tube and a metal thin film upon the inside of the tube is proposed for the delivery of ArF-excimer laser light. From theoretical analysis, aluminum is chosen as the metal layer. A thin aluminum film is deposited by metallorganic chemical-vapor deposition, with dimethylethylamine alane employed as the source material. Measured loss spectra in vacuum-ultraviolet and ultraviolet regions and losses for ArF-excimer laser light show the low-loss property of the aluminum-coated fiber at the 193-nm wavelength of ArF-excimer laser light. The straight loss of the 1-m long, 1-mm-bore fiber is 1.0 dB.

© 1999 Optical Society of America

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(140.2180) Lasers and laser optics : Excimer lasers

Yuji Matsuura and Mitsunobu Miyagi, "Aluminum-Coated Hollow Glass Fibers for ArF-Excimer Laser Light Fabricated by Metallorganic Chemical-Vapor Deposition," Appl. Opt. 38, 2458-2462 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. S. Taylor, K. E. Leopold, R. K. Brimacombe, and S. Mihailov, “Dependence of the damage and transmission properties of fused silica fibers on the excimer laser wavelength,” Appl. Opt. 27, 3124–3134 (1988).
  2. R. K. Brimacombe, R. S. Taylor, and K. E. Leopold, “Dependence of non-linear transmission properties of fused silica fibers on excimer laser wavelength,” J. Appl. Phys. 66, 4035–4039 (1989).
  3. P. Karlitschek, K.-F. Klein, G. Hillrichs, and U. Grzesik, “Improved UV-fiber for 193-nm excimer laser applications,” in Biomedical Fiber Optics, A. Katzir and J. A. Harrington, eds., Proc. SPIE 2677, 127–134 (1996).
  4. K.-F. Klein, G. Hillrichs, P. Karlitschek, and K. R. Mann, “Possibilities and limitations of optical fibers for the transmission of excimer laser radiation,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 2966, 564–573 (1997).
  5. T. Toriya, K. Kaneda, T. Tsumanuma, and K. Sanada, “Characteristics of an optical fiber for high-power excimer laser,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, and M. Harris, eds., Proc. SPIE 2396, 138–144 (1995).
  6. K. Okada, T. Yamada, H. Tsubakihara, and A. Sakamoto, “Enhancement in KrF laser transmission of low-OH silica fiber by photo-bleaching of defects,” Laser Orig. 25, 646–649 (1997; in Japanese).
  7. Y. Hashishin, H. Nakano, H. Tanaka, and U. Kubo, “UV-laser biotissue interactions and delivery systems,” in Specialty Fiber Optics for Biomedical and Industrial Applications, A. Katzir and J. A. Harrington, eds., Proc. SPIE 2977, 105–114 (1997).
  8. Y. Matsuura and M. Miyagi, “Flexible hollow waveguides for delivery of excimer laser light,” Opt. Lett. 23, 1226–1228 (1998).
  9. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1785–1809 (1964).
  10. H. Nishihara, T. Inoue, and J. Koyama, “Low-loss parallel-plate waveguide at 10 μm,” Appl. Phys. Lett. 25, 391–393 (1974).
  11. E. Garmire, T. McMahon, and M. Bass, “Propagation of IR light in flexible hollow waveguides: further discussion,” Appl. Opt. 15, 3037–3039 (1976).
  12. M. Miyagi, A. Hongo, and S. Kawakami, “Transmission characteristics of dielectric-coated metallic waveguide for infrared transmission: slab waveguide model,” IEEE J. Quantum Electron. QE-19, 136–144 (1983).
  13. M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
  14. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, New York, 1985).
  15. E. D. Palik, ed., Handbook of Optical Constants of Solids II (Academic, New York, 1991).
  16. T. Kodas and M. Hampden-Smith, eds., The Chemistry of Metal CVD (VCH, Weinheim, Germany, 1994).
  17. M. G. Simmonds, E. C. Phillips, J.-W. Hwang, and W. L. Gladfelter, “A stable, liquid precursor for aluminum,” Chemtronics 5, 155–158 (1991).
  18. W. L. GladFelter, D. C. Boyd, and K. F. Jensen, “Trimethyamine complexes of alane as precursors for the low-pressure chemical vapor deposition of aluminum,” Chem. Mater. 1, 339–343 (1989).
  19. T. Abel, J. Hirsch, and J. A. Harrington, “Hollow glass waveguides for broadband infrared transmission,” Opt. Lett. 19, 1034–1036 (1994).
  20. M. Osawa, Y. Kato, T. Watanabe, M. Miyagi, S. Abe, M. Aizawa, and S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow-glass waveguides for the infrared by the liquid-phase coating method,” Opt. Laser Technol. 27, 393–396 (1995).
  21. Y. Matsuura, M. Saito, M. Miyagi, and A. Hongo, “Loss characteristics of circular hllow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
  22. H. E. Bennett, “Specular reflectance of aluminized ground glass and the height distribution of surface irregularities,” J. Opt. Soc. Am. 53, 1389–1394 (1963).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited