OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 12 — Apr. 20, 1999
  • pp: 2486–2498

Calibration of a Computer-Controlled Precision Wavemeter for Use with Pulsed Lasers

Parminder S. Bhatia, Craig W. McCluskey, and John W. Keto  »View Author Affiliations


Applied Optics, Vol. 38, Issue 12, pp. 2486-2498 (1999)
http://dx.doi.org/10.1364/AO.38.002486


View Full Text Article

Acrobat PDF (255 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The design of a pulsed wavemeter to monitor the high-precision tuning of pulsed (as well as cw) laser sources is presented. This device is developed from a combination of silver-coated Fabry–Perot etalons with various plate spacings. These etalons provide stepwise refinement of the wavelength to be measured. The wavemeter is controlled by a computer through a CAMAC interface, which measures the absolute wavelength in the visible with an accuracy of 2 parts in 108. The time required for data acquisition and computation to measure the refined wavelength with a single 2-MHz CPU is less than 100 ms. We describe the calibration of the instrument over the wavelength range 400–850 nm. We obtain the required calibration lines by locking lasers on hyperfine transitions of iodine, uranium, rubidium, and cesium. Methods to reduce the number of calibration lines required for calibration of the system are described. The expected wavelength-dependent phase shift of the silver coatings is compared with that measured for the etalon following calibration. The differences are larger than expected because of either optical aberations or the use of centroids to measure the fringe position.

© 1999 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(140.3600) Lasers and laser optics : Lasers, tunable

Citation
Parminder S. Bhatia, Craig W. McCluskey, and John W. Keto, "Calibration of a Computer-Controlled Precision Wavemeter for Use with Pulsed Lasers," Appl. Opt. 38, 2486-2498 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-12-2486


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. F. V. Kowalski, W. Demtroder, and A. L. Schawlow, “Digital wavemeter for cw lasers,” in Laser Spectroscopy III, J. L. Hall and J. L. Carlsten, eds. (Springer-Verlag, Berlin, 1977), p. 412.
  2. F. V. Kowalski, R. E. Teets, W. Demtröder, and A. L. Schawlow, “An improved wavemeter for cw lasers,” J. Opt. Soc. Am. 68, 1611–1613 (1978).
  3. E. A. Hildum, U. Boesl, D. M. McIntyre, R. G. Beausoleil, and T. W. Hänsch, “Measurement of the 1S–2S frequency in atomic hydrogen,” Phys. Rev. Lett. 56, 576–579 (1986).
  4. M. S. Fee, K. Danzmann, and S. Chu, “Optical heterodyne measurement of pulsed lasers: toward high-precision pulsed spectroscopy,” Phys. Rev. A 45, 4911–4924 (1992).
  5. R. L. Byer, J. Paul, and M. D. Duncan, “A wavelength meter,” in Laser Spectroscopy III, J. L. Hall and J. L. Carlsten, eds. (Springer-Verlag, Berlin, 1977), pp. 414–416.
  6. A. Fischer, R. Kullmer, and W. Demtröder, “Computer controlled Fabry–Perot wavemeter,” Opt. Commun. 39, 277–282 (1981).
  7. N. Konishi, T. Suzuki, Y. Taira, H. Kato, and T. Kasuya, “High precision wavelength meter with Fabry–Perot optics,” Appl. Phys. 25, 311–316 (1981).
  8. J. H. Snyder, “Compact static wavelength meter of both pulsed and cw lasers,” Sov. J. Quantum Electron. 8, 959 (1978).
  9. M. B. Morris, T. J. McIlrath, and J. J. Snyder, “Fizeau wavemeter for pulsed laser wavelength measurement,” Appl. Opt. 23, 3862–3868 (1984).
  10. J. L. Garner, “Wave-front curvature in a Fizeau wavemeter,” Opt. Lett. 8, 91–93 (1983); “Compact Fizeau wavemeter,” Appl. Opt. 24, 3570–3573 (1985).
  11. D. F. Gray, K. A. Smith, and F. B. Dunning, “Simple compact Fizeau wavemeter,” Appl. Opt. 25, 1339–1343 (1986).
  12. B. Faust and L. Klynning, “Low-cost wavemeter with a solid Fizeau interferometer and fiber-optic input,” Appl. Opt. 30, 5254–5259 (1991).
  13. J. Kielkopf and L. Portaro, “Loyd’s mirror as a laser wavemeter,” Appl. Opt. 31, 7083–7088 (1992).
  14. T. E. Dimmick, “Simple and accurate wavemeter implemented with a polarization interferometer,” Appl. Opt. 36, 9396–9401 (1997).
  15. C. J. White, T. L. Boyd, R. B. Michie, and J. W. Keto, “Precision pulsed UV Wavemeter,” in Pulsed Single-Frequency Lasers: Technology and Applications, W. K. Bischel and L. A. Rahn, eds., Proc. SPIE 912, 234–236 (1988).
  16. W. Lichten, “Precise wavelength measurements and optical phase shifts. I. General theory,” J. Opt. Soc. Am. A 2, 1869–1876 (1985); “Precise wavelength measurements and optical phase shifts. II. Applications,” J. Opt. Soc. Am. A 3, 909–915 (1986).
  17. K. W. Meissner, “Interference spectroscopy. I,” J. Opt. Soc. Am. 31, 405–427 (1941).
  18. M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1964), p. 330.
  19. O. S. Heavens, Optical Properties of Thin Solid Films (Butterworth, London, 1955; 2nd ed., Dover, New York, 1991), pp. 55–88.
  20. J. M. Bennett, “Precise method for measuring the absolute phase change on reflection,” J. Opt. Soc. Am. 54, 612–624 (1964).
  21. V. J. Bauer, “Die Dispersion des Phasensprungs bei der Lichtreflexion an dünnen Metallschichten,” Ann. Phys. (Leipzig) 20, 481–501 (1934).
  22. Ref. 19, pp. 71–75.
  23. M. V. Klein and T. E. Furtak, Optics (Wiley, New York, 1986), pp. 295–300.
  24. mathematica, a software program for mathematics, is available from Wolfram Research, Inc., Champagne, Illinois.
  25. Ref. 19, pp. 166–176.
  26. D. W. Lynch and W. R. Hunter, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985), pp. 350–357.
  27. P. Winsemius, F. F. van Kampen, H. P. Lengkeek, and C. G. van Went, “Temperature dependence of the optical properties of Au, Ag, and Cu,” J. Phys. F 6, 1583–1606 (1976).
  28. Melles Griot, Optics Guide 5 (Melles Griot, Inc., Irvine, Calif., 1990), pp. 3–6.
  29. M. D. Levenson and S. S. Kano, Introduction to Non-Linear Laser Spectroscopy (Academic, San Diego, Calif., 1988).
  30. H. P. Layer, “A portable iodine stabilized helium-neon laser,” IEEE Trans. Instrum. Meas. IM-29, 358–361 (1980).
  31. We the help of Howard Layer, who contributed greatly to our construction of a copy of his laser.
  32. G. R. Hanes, K. M. Baird, and J. DeRemigis, “Stability, reproducibility and absolute wavelength of a 633-nm He–Ne laser stabilized to an iodine hyperfine component,” Appl. Opt. 12, 1600–1605 (1973).
  33. G. Avila, P. Gain, E. de Clercq, and P. Cerez, “New absolute wavenumber measurement of the D2 line of cesium,” Metrologia 22, 111–114 (1986).
  34. C. E. Tanner and C. E. Wieman, “Precision measurement of the hyperfine structure of the 133Cs 6P3/2 state,” Phys. Rev. A 38, 1616–1617 (1988).
  35. G. P. Barwood, P. Gill, and W. R. Rowley, “Frequency measurements on optically narrowed Rb-stabilized laser diodes at 780 nm and 795 nm,” Appl. Phys. B 53, 142–147 (1991).
  36. B. A. Palmer, R. A. Keller, and R. Engleman, Jr., “An atlas of uranium emission intensities in a hollow cathod discharge,” informal report LA-8251-MS (Los Alamos Scientific Laboratory, Los Alamos, N.M., July 1980).
  37. C. J. Sansonetti and K. H. Weber, “Reference lines for dye-laser wave-number calibration in the optogalvanic spectra of uranium and thorium,” J. Opt. Soc. Am. B 1, 361–365 (1984).
  38. B. A. Palmer, R. A. Keller, F. V. Kowalski, and J. L. Hall, “Accurate wave-number measurements of uranium spectral lines,” J. Opt. Soc. Am. 71, 948–952 (1981).
  39. D. S. King, P. K. Schenck, K. C. Smyth, and J. C. Travis, “Direct calibration of laser wavelength and bandwidth using the optogalvanic effect in hollow cathode lamps,” Appl. Opt. 16, 2617–2619 (1977).
  40. W. R. Bennett, Atomic Gas Laser Transition Data: A Critical Evaluation (IFI/Plenum, New York, 1979), pp. 18–20.
  41. J. P. Boquillon, “High resolution coherant anti-Stokes Raman spectroscopy (CARS) of oxygen and carbon dioxide,” in Pulsed-Signal Frequency Lasers: Technology and Applications, W. K. Bischel and L. A. Rahn, eds., Proc. SPIE 912, 160–170 (1988).
  42. R. Sussmann, Th. Weber, E. Riedle, and H. J. Neusser, “Frequency shifting of pulsed narrow-band laser light in a multipass Raman cell,” Opt. Commun. 88, 408–414 (1992).
  43. J. Kuo and I. Akamatsu, “A simple real-time wavemeter for pulsed lasers,” Meas. Sci. Technol. 2, 54–58 (1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited