OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 12 — Apr. 20, 1999
  • pp: 2540–2544

Deceleration of a calcium atomic beam with a frequency-doubled diode laser

Germano Woehl, Jr., Guilherme de Andrade Garcia, Flavio Caldas Cruz, Daniel Pereira, and Artemio Scalabrin  »View Author Affiliations

Applied Optics, Vol. 38, Issue 12, pp. 2540-2544 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (192 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A calcium atomic beam has been decelerated by a single extended-cavity diode laser, frequency doubled to 423 nm. A potassium niobate crystal is placed in an external power buildup cavity, and the second-harmonic laser beam, counterpropagating with the atomic beam, is tuned into resonance with the strong 1S01P1 transition of calcium. For input power of 78 mW at 846 nm, we generate 22 mW at 423 nm after correction for the reflectivity of our cavity output coupler. To keep the atoms always in resonance during the deceleration process, the Zeeman tuning technique was used.

© 1999 Optical Society of America

OCIS Codes
(120.4800) Instrumentation, measurement, and metrology : Optical standards and testing
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.2020) Lasers and laser optics : Diode lasers
(140.3320) Lasers and laser optics : Laser cooling
(190.2620) Nonlinear optics : Harmonic generation and mixing

Original Manuscript: October 5, 1998
Revised Manuscript: December 8, 1998
Published: April 20, 1999

Germano Woehl, Guilherme de Andrade Garcia, Flavio Caldas Cruz, Daniel Pereira, and Artemio Scalabrin, "Deceleration of a calcium atomic beam with a frequency-doubled diode laser," Appl. Opt. 38, 2540-2544 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Chu, C. Wieman, eds., Laser Cooling and Trapping of Atoms, Special Issue of J. Opt. Soc. Am. B6, 2020–2270 (1989); H. Metcalf, P. van der Straten, “Cooling and trapping of neutral atoms,” Phys. Rep. 244, 203–286 (1994).
  2. D. J. Wineland, R. E. Drullinger, F. L. Walls, “Radiation-pressure cooling of bound resonant absorbers,” Phys. Rev. Lett. 40, 1639–1642 (1978); J. C. Bergquist, ed., Proceedings of the Fifth Symposium on Frequency Standards and Metrology (World Scientific, Singapore, 1996). [CrossRef]
  3. J. Helmcke, A. Morinaga, J. Ishikawa, F. Riehle, “Optical frequency standards,” IEEE Trans. Instrum. Meas. 38, 524–532 (1989). [CrossRef]
  4. F. Riehle, T. Kisters, A. Witte, J. Helmcke, C. J. Borde, “Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer,” Phys. Rev. Lett. 67, 177–180 (1991); A. Morinaga, Y. Ohuchi, S. Yanagimachi, T. Tako, “Interference fringes of the atom interferometer comprised of four copropagating traveling laser beams,” in Proceedings of the Fifth Symposium on Frequency Standards and Metrology, Woods Hole, Mass. (World Scientific, Singapore, 1995).
  5. H. Schnatz, B. Lipphardt, J. Helmcke, F. Riehle, G. Zinner, “First phase-coherent frequency measurement of visible radiation,” Phys. Rev. Lett. 76, 18–21 (1996). [CrossRef] [PubMed]
  6. F. Strumia, “A proposal for a new absolute frequency standard, using a Mg or Ca atomic beam,” Metrologia 8, 85–90 (1972). [CrossRef]
  7. D. Pereira, J. C. S. Moraes, E. M. Telles, A. Scalabrin, F. Strumia, A. Moretti, G. Carelli, C. A. Massa, “A review of optically pumped far-infrared laser lines from methanol isotopes,” Int. J. Infrared Millimeter Waves 15, 1–44 (1994); G. Moruzzi, J. C. S. Moraes, F. Strumia, “Far infrared laser lines and assignments of CH3OH: a review,” Int. J. Infrared Millimeter Waves 13, 1269–1312 (1992). [CrossRef]
  8. N. Beverini, E. Maccioni, D. Pereira, F. Strumia, G. Vissani, “Laser cooling in calcium and magnesium atomic beams,” in Proceedings of the Fourth Symposium on Frequency Standards and Metrology, A. De Marchi, ed. (Springer-Verlag, Berlin, 1988), pp. 282–284; N. Beverini, F. Giammanco, E. Maccioni, F. Strumia, G. Vissani, “Measurement of the calcium 1P1–1D2 transition rate in a laser-cooled atomic beam,” J. Opt. Soc. Am. B 6, 2188–2193 (1989).
  9. E. L. Raab, M. Prentiss, A. Cable, S. Chu, D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987). [CrossRef] [PubMed]
  10. T. Kurosu, F. Shimizu, “Laser cooling and trapping of calcium and strontium,” Jpn. J. Appl. Phys. 29, L2127–L2129 (1990). [CrossRef]
  11. J. Helmcke, F. Riehle, J. Ishikawa, A. Witte, T. Kisters, L.-L. Liu, X. Yuan, “Optical frequency standard based on laser cooled Ca atoms,” in Light Induced Kinetic Effects on Atoms, Ions, and Molecules, L. Moi, S. Gozzini, C. Gabbanini, E. Arimondo, F. Strumia, eds. (ETS Editrice, Pisa, Italy, 1991); A. Witte, T. Kisters, F. Riehle, J. Helmcke, “Laser cooling and deflection of a calcium atomic beam,” J. Opt. Soc. Am. B 9, 1030–1037 (1992). [CrossRef]
  12. C. W. Oates, M. Stephens, L. W. Hollberg, “A compact, all-diode-laser optical frequency reference based on laser-trapped atomic calcium,” in 1997 IEEE International Frequency Control Symposium (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 219–224.
  13. J. C. Camparo, “The diode laser in atomic physics,” Contemp. Phys. 26, 443–477 (1985); C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum.62, 1–20 (1991); R. W. Fox, A. S. Zibrov, L. Hollberg, “Semiconductor diode lasers,” in Atomic, Molecular, and Optical Physics: Electromagnetic Radiation, in Vol. 3 of Methods of Experimental Physics, F. B. Dunning, R. G. Hulet, eds. (Academic, San Diego, Calif., 1995) and references therein.
  14. F. Strumia, Dipartimento di Fisica, Universita di Pisa, via F. Buonarroti 2, I-56127 Pisa, Italy (personal communication, March1998).
  15. F. Riehle, Physikalisch Technische Bundesanstalt, Bundesallee 100, D-38116 Braunschweig, Germany (personal communication, 23November1998); T. Kurosu, G. Zinner, T. Trebst, F. Riehle, “Method for quantum-limited detection of narrow-linewidth transitions in cold atomic ensembles,” Phys. Rev. A. 58, 4275–4278 (1998).
  16. A. Hemmerich, D. H. McIntyre, C. Zimmermann, T. H. Hänsch, “Second-harmonic generation and optical stabilization of a diode laser in an external ring resonator,” Opt. Lett. 15, 372–374 (1990). [CrossRef] [PubMed]
  17. J. V. B. Gomide, G. A. Garcia, F. C. Cruz, A. J. Polaquini, M. P. Arruda, D. Pereira, A. Scalabrin, “Construction of an atomic beam system and efficient production of metastable states,” Braz. J. Phys. 27, 266–275 (1997).
  18. M. G. Littman, H. J. Metcalf, “Spectrally narrow pulsed dye laser without beam expander,” Appl. Opt. 17, 2224–2227 (1978). [CrossRef] [PubMed]
  19. T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1983). [CrossRef]
  20. G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968). [CrossRef]
  21. H. Mabuchi, E. S. Polzik, H. J. Kimble, “Blue-light-induced infrared absorption in KNbO3,” J. Opt. Soc. Am. B 11, 2023–2029 (1994). [CrossRef]
  22. P. Lodahl, J. L. Sorensen, E. S. Polzik, “High efficiency second harmonic generation with a low power diode laser,” Appl. Phys. B 64, 383–386 (1997). [CrossRef]
  23. N. F. Ramsey, Molecular Beams (Oxford U. Press, New York, 1990).
  24. F. Strumia, “Application of laser cooling to the atomic frequency standards,” in Laser Science and Technology, A. N. Chester, V. S. Letokov, S. Martellucci, eds. (Plenum, New York, 1988), pp. 367–401. [CrossRef]
  25. C. W. Oates, F. Bondu, L. Hollberg, “Laser cooling and trapping of alkaline Earth atoms: application to a Ca optical frequency reference,” in Proceedings of the 16th International Conference on Atomic Physics, W. E. Baylis, G. W. F. Drake, eds. (American Institute of Physics, Woodbury, N.Y., 1998), p. 115.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited