OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 12 — Apr. 20, 1999
  • pp: 2545–2553

High-speed random access laser tuning

David C. Thompson, George E. Busch, Clifford J. Hewitt, Dennis K. Remelius, Tsutomu Shimada, Charlie E. M. Strauss, Carl W. Wilson, and Thomas J. Zaugg  »View Author Affiliations


Applied Optics, Vol. 38, Issue 12, pp. 2545-2553 (1999)
http://dx.doi.org/10.1364/AO.38.002545


View Full Text Article

Enhanced HTML    Acrobat PDF (255 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have developed a technique for laser tuning at rates of 100 kHz or more using a pair of acousto-optic modulators. In addition to all-electronic wavelength control, the same modulators also can provide electronically variable Q-switching, cavity length and power stabilization, chirp and linewidth control, and variable output coupling, all at rates far beyond what is possible with conventional mechanically tuned components. Tuning rates of 70 kHz have been demonstrated on a radio-frequency-pumped CO2 laser, with random access to over 50 laser lines spanning a 17% range in wavelength and with wavelength discrimination better than 1 part in 1000. A compact tuner and Q-switch has been deployed in a 5–10-kHz pulsed lidar system. The modulators each operate at a fixed Bragg angle, with the acoustic frequency determining the selected wavelength. This arrangement doubles the wavelength resolution without introducing an undesirable frequency shift.

© 1999 Optical Society of America

OCIS Codes
(140.3470) Lasers and laser optics : Lasers, carbon dioxide
(140.3600) Lasers and laser optics : Lasers, tunable
(230.1040) Optical devices : Acousto-optical devices
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar

History
Original Manuscript: October 22, 1998
Revised Manuscript: January 4, 1999
Published: April 20, 1999

Citation
David C. Thompson, George E. Busch, Clifford J. Hewitt, Dennis K. Remelius, Tsutomu Shimada, Charlie E. M. Strauss, Carl W. Wilson, and Thomas J. Zaugg, "High-speed random access laser tuning," Appl. Opt. 38, 2545-2553 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-12-2545


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Holly, S. Aiken, “Carbon dioxide probe laser with rapid wavelength switching,” in Advances in Laser Engineering I, M. L. Stitch, E. J. Woodbury, eds., Proc. SPIE122, 45–52 (1977). [CrossRef]
  2. A. Crocker, R. M. Jenkins, M. Johnson, “A frequency agile, sealed-off CO2 TEA laser,” J. Phys. E 18, 133–135 (1985). [CrossRef]
  3. F. R. Faxvog, H. W. Mocker, “Rapidly tunable CO2 TEA laser,” Appl. Opt. 21, 3986–3987 (1982). [CrossRef] [PubMed]
  4. J. E. Eberhardt, J. G. Haub, L. B. Whitbourn, “Carbon dioxide laser tuning through 110 lines in 3 ms for airborne remote sensing,” Appl. Opt. 27, 879–884 (1988). [CrossRef] [PubMed]
  5. A. P. Goutzoulis, D. R. Pape, eds., Design and Fabrication of Acousto-Optic Devices (Marcel Dekker, New York, 1994).
  6. W. R. Klein, B. D. Cook, “Unified approach to ultrasonic light diffraction,” IEEE Trans. Sonics Ultrason. SU-13, 123–134 (1967). [CrossRef]
  7. R. V. Johnson, “Design of Acousto-Optic Modulators,” in Design and Fabrication of Acousto-Optic Devices, A. P. Goutzoulis, D. R. Pape, eds. (Marcel Dekker, New York, 1994), Chap. 3, pp. 123–193.
  8. D. J. Taylor, S. E. Harris, S. T. K. Nieh, T. W. Hansch, “Electronic tuning of a dye laser using the acousto-optic filter,” Appl. Phys. Lett. 19, 269–271 (1971). [CrossRef]
  9. L. D. Hutcheson, R. S. Hughes, “Rapid acousto-optic tuning of a dye laser,” Appl. Opt. 13, 1395–1398 (1974). [CrossRef] [PubMed]
  10. W. Streifer, J. R. Whinnery, “Analysis of a dye laser tuned by an acousto-optic filter,” Appl. Phys. Lett. 17, 335–337 (1970). [CrossRef]
  11. G. A. Coquin, K. W. Cheung, “Electronically tunable external-cavity semiconductor laser,” Electron. Lett. 24, 599–600 (1988). [CrossRef]
  12. L. J. Denes, M. Gottlieb, N. B. Singh, D. R. Suhre, H. Buhray, J. J. Conroy, “Rapid tuning mechanism for CO2 lasers,” in Gas Laser Technology, P. P. Chenausky, R. A. Sauerbrey, J. H. Tillotson, eds., Proc. SPIE894, 78–85 (1988). [CrossRef]
  13. K. Doughty, K. Cameron, “Electron tuning of LEC lasers,” in Optical Technology for Microwave Applications II and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. SPIE1703, 136–142 (1992). [CrossRef]
  14. G. A. Coquin, J. P. Griffin, L. K. Anderson, “Wide-band acoustooptic deflectors using acoustic beam steering,” IEEE Trans. Sonics Ultrason. SU-17, 499–505 (1970).
  15. D. A. Pinnow, “Acousto-optic light deflection: design considerations for first order beam steering transducers,” IEEE Trans. Sonics Ultrason. SU-18, 209–214 (1971). [CrossRef]
  16. R. L. Abrams, D. A. Pinnow, “Acousto-optic properties of crystalline germanium,” J. Appl. Phys. 41, 2765–2768 (1970). [CrossRef]
  17. M. J. Ehrlich, L. C. Phillips, J. W. Wagner, “Voltage-controlled acousto-optic phase-shifter,” Rev. Sci. Instrum. 59, 2390–2392 (1988). [CrossRef]
  18. F. V. Kowalsi, P. D. Hale, S. J. Shattil, “Broadband continuous-wave laser,” Opt. Lett. 13, 622–624 (1988). [CrossRef]
  19. F. V. Kowalsi, S. J. Shattil, P. D. Hale, “Optical pulse generation with a frequency shifted feedback laser,” Appl. Phys. Lett. 53, 734–736 (1988). [CrossRef]
  20. P. I. Richter, T. W. Hansch, “Diode lasers in external lasers with frequency-shifted feedback,” Opt. Commun. 85, 414–418 (1991). [CrossRef]
  21. S. Balle, I. C. M. Littler, K. Bergmann, F. V. Kowalski, “Frequency shifted feedback dye laser operating at a small shift frequency,” Opt. Commun. 102, 166–174 (1993). [CrossRef]
  22. K. Nakamura, T. Miyahara, H. Ito, “Observation of a highly phase-correlated chirped frequency comb output from a frequency-shifted feedback laser,” Appl. Phys. Lett. 72, 2631–2633 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited