OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 12 — Apr. 20, 1999
  • pp: 2706–2713

Filling in of Fraunhofer and Gas-Absorption Lines in Sky Spectra as Caused by Rotational Raman Scattering

Christopher E. Sioris and Wayne F. J. Evans  »View Author Affiliations


Applied Optics, Vol. 38, Issue 12, pp. 2706-2713 (1999)
http://dx.doi.org/10.1364/AO.38.002706


View Full Text Article

Acrobat PDF (209 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A line-by-line radiative-transfer model to quantify the Ring effect as caused by rotational Raman scattering has been developed for the 310–550-nm spectral interval. The solar zenith angle and the resolution are key input parameters, as is the sky spectrum (excluding inelastic atmospheric scattering), which was modeled with modtran 3.5. The filling in is modeled for ground-based viewing geometry and includes surface reflection and single inelastic scattering. It is shown that O2 contributes half of the filling in of N2. A strong inverse relationship with wavelength is noted in the filling in. A comparison with observations shows moderate agreement. The largest filling in occurs in the Ca ii K and H lines.

© 1999 Optical Society of America

OCIS Codes
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(300.1030) Spectroscopy : Absorption
(300.6330) Spectroscopy : Spectroscopy, inelastic scattering including Raman

Citation
Christopher E. Sioris and Wayne F. J. Evans, "Filling in of Fraunhofer and Gas-Absorption Lines in Sky Spectra as Caused by Rotational Raman Scattering," Appl. Opt. 38, 2706-2713 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-12-2706


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. R. Grainger and J. Ring, “Anomalous Fraunhofer line profiles,” Nature (London) 193, 762 (1962).
  2. J. Burrows, M. Vountas, H. Haug, K. Chance, L. Marquard, K. Muirhead, U. Platt, A. Richter, and V. Rozanov, “Study of the Ring Effect,” Technical Report. ESA contract 10996/94/NL/CN (European Space Agency, Noordivijk, The Netherlands, 1996).
  3. R. T. Brinkmann, “Rotational Raman Scattering in planetary atmospheres,” Astrophys. J. 154, 1087–1093 (1968).
  4. G. W. Kattawar, A. T. Young, and T. J. Humphreys, “Inelastic scattering in planetary atmospheres. I. The Ring effect, without aerosols,” Astrophys. J. 243, 1049–1057 (1981).
  5. J. Joiner, P. K. Bhartia, R. P. Cebula, E. Hilsenrath, R. D. McPeters, and H. Park, “Rotational Raman Scattering (Ring effect) in satellite ultraviolet measurements,” Appl. Opt. 34, 4513–4525 (1995).
  6. K. V. Chance and R. J. Spurr, “Ring effect studies: Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum,” Appl. Opt. 36, 5224–5230 (1997).
  7. M. Vountas, V. V. Rozanov, and J. P. Burrows, “Ring effect: impact of rotational Raman scattering on radiative transfer in Earth’s atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 60, 943–961 (1998).
  8. D. S. Renschler, J. L. Hunt, T. K. McCubbin, Jr., and S. R. Polo, “Triplet structure of the rotational Raman spectrum of oxygen,” J. Mol. Spectrosc. 31, 173–176 (1969).
  9. R. P. Wayne, Chemistry of Atmospheres, 2nd ed. (Oxford University, Oxford, 1991).
  10. A. Berk, L. S. Bernstein, and D. C. Robertson, “modtran: a moderate resolution model for lowtran 7,” Tech. Rep. PL-TR-89–0122 (U.S. Air Force Phillips Laboratory, Hanscom Air Force Base, Mass., 1989).
  11. A. W. Harrison, “Diurnal variation of the Ring effect,” Can. J. Phys. 54, 1000–1005 (1976).
  12. D. J. Fish and R. L. Jones, “Rotational Raman scattering and the ring effect in zenith-sky spectra,” Geophys. Res. Lett. 22, 811–814 (1995).
  13. A. W. Harrison, “Computed filling in of Fraunhofer lines 3850–4450 Å,” Can. J. Phys. 52, 2030–2036 (1974).
  14. J. F. Noxon and R. Goody, “Noncoherent scattering of skylight,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 1, 163–166 (1965).
  15. A. W. Harrison and D. J. W. Kendall, “Fraunhofer line filling in (3855–4455 Å),” Can. J. Phys. 52, 940–944 (1974).
  16. S. Solomon, A. L. Schmeltekopf, and R. W. Sanders, “On the interpretation of zenith sky absorption measurements,” J. Geophys. Res. 92, 8311–8319 (1987).
  17. K. N. Liou, An Introduction to Atmospheric Radiation (Academic, San Diego, Calif., 1980).
  18. F. E. Barmore, “The filling-in of Fraunhofer lines in the day sky,” J. Atmos. Sci. 32, 1489–1493 (1975).
  19. I. Aben, F. Helderman, D. M. Stam, and P. Stammes, “High-spectral resolution measurements of the atmosphere with the GOME BBM,” in Polarization: Measurement, Analysis, and Remote Sensing, D. H. Goldstein and R. A. Chipman, eds., Proc. SPIE 3121, 446–453 (1997).
  20. K. R. Lang, Astrophysical Formulae (Springer Verlag, New York, 1986).
  21. I. Kostadinov, G. Giovanelli, F. Ravegnani, F. Evangelisti, P. Bonasoni, R. Werner, and U. Bonafe, “Polarization and Ring effect influences upon stratospheric DOAS measurements,” in Spectroscopic Atmospheric Monitoring Techniques, K. Schäfer, ed., Proc. SPIE 3106, 74–83 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited