OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 13 — May. 1, 1999
  • pp: 2743–2748

Optimum design of a grazing-incidence flat-field spectrograph with a spherical varied-line-space grating

Tatsuo Harada, Kaoru Takahashi, Hideo Sakuma, and Andrzej Osyczka  »View Author Affiliations

Applied Optics, Vol. 38, Issue 13, pp. 2743-2748 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (114 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A grazing-incidence spectrograph is designed by use of the flat-field image-focusing property of a spherical varied-line-space grating. Optimum grating parameters for mechanical ruling are selected by application of genetic algorithms. Two gratings, one for 2–5-nm and the other for 5–20-nm spectral regions, are designed, and their fabrication tolerances are analyzed.

© 1999 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(220.1000) Optical design and fabrication : Aberration compensation
(260.7200) Physical optics : Ultraviolet, extreme

Original Manuscript: October 20, 1998
Revised Manuscript: January 12, 1999
Published: May 1, 1999

Tatsuo Harada, Kaoru Takahashi, Hideo Sakuma, and Andrzej Osyczka, "Optimum design of a grazing-incidence flat-field spectrograph with a spherical varied-line-space grating," Appl. Opt. 38, 2743-2748 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. G. Loewen, E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 1997), p. 455.
  2. J. Lerner, J. Flamand, P. Laud, G. Passereau, A. Thevenson, “Diffraction gratings ruled and holographic—a review,” in Periodic Structures, Gratings, Moire Patterns, and Diffraction Phenomena, C. H. Chi, E. G. Loewen, C. L. O’Bryan, eds., Proc. SPIE240, 82–88 (1980). [CrossRef]
  3. T. Harada, T. Kita, “Mechanically ruled aberration-corrected concave gratings,” Appl. Opt. 19, 3987–3993 (1980). [CrossRef] [PubMed]
  4. C. Palmer, “Absolute astigmatism correction for flat field spectrographs,” Appl. Opt. 28, 1605–1607 (1989). [CrossRef] [PubMed]
  5. T. Harada, S. Moriyama, T. Kita, “Mechanically ruled stigmatic concave grating,” Jpn. J. Appl. Phys. 14, Suppl. 14-1, 175–179 (1975).
  6. T. Kita, T. Harada, “Ruling engine using a piezoelectric device for large and high-groove density gratings,” Appl. Opt. 31, 1399–1406 (1992). [CrossRef] [PubMed]
  7. T. Kita, T. Harada, “Use of aberration-corrected concave gratings in optical dumultiplexers,” Appl. Opt. 22, 819–825 (1983). [CrossRef]
  8. T. Kita, T. Harada, N. Nakano, H. Kuroda, “Mechanically ruled aberration corrected concave grating for a flat-field grazing incidence spectrograph,” Appl. Opt. 22, 512–513 (1983). [CrossRef] [PubMed]
  9. N. Nakano, H. Kuroda, T. Kita, T. Harada, “Development of a flat-field grazing-incidence XUV spectrometer and its application in picosecond XUV spectroscopy,” Appl. Opt. 23, 2386–2392 (1984). [CrossRef] [PubMed]
  10. G. P. Kiehn, T. Garvey, R. A. Smith, O. Willi, A. R. Damerell, J. West, “Absolute calibration of an XUV time resolving spectrograph,” in X Rays from Laser Plasmas, M. C. Richardson ed., Proc. SPIE831, 150–153 (1988). [CrossRef]
  11. M. C. Hettrick, S. Bowyer, R. F. Malina, C. Martin, S. Mrowka, “Extreme Ultraviolet Explorer spectrometer,” Appl. Opt. 24, 1737–1756 (1985). [CrossRef] [PubMed]
  12. T. Harada, T. Kita, S. Bowyer, M. Hurwitz, “Design of spherical varied line-space gratings for a high resolution EUV spectrometer,” in International Conference on the Application and Theory of Periodic Structures, J. M. Lerner, W. R. McKinney, eds., Proc. SPIE1545, 2–10 (1991). [CrossRef]
  13. T. Harada, H. Sakuma, K. Takahashi, T. Watanabe, H. Hara, T. Kita, “Design of a high-resolution extreme-ultraviolet imaging spectrometer with aberration-corrected concave gratings,” Appl. Opt. 37, 6803–6810 (1998). [CrossRef]
  14. H. Noda, T. Namioka, M. Seya, “Design of holographic concave grating for Seya–Namioka monochromators,” J. Opt. Soc. Am. 64, 1043–1048 (1974). [CrossRef]
  15. T. Takahashi, T. Katayama, “Automatic design of holographic gratings for Seya–Namioka monochromators,” J. Opt. Soc. Am. 68, 1254–1256 (1978). [CrossRef]
  16. W. R. McKinney, C. Palmer, “Numerical design method for aberration-reduced concave grating spectrometers,” Appl. Opt. 26, 3108–3118 (1987). [CrossRef] [PubMed]
  17. M. Koike, T. Yamazaki, Y. Harada, “Design of holographic gratings recorded with aspheric wave-front recording optics for soft x-ray flat field spectrographs,” J. Electron. Spectrosc. Relat. Phenom. (to be published).
  18. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, Reading, Mass., 1989).
  19. A. Osyczka, S. Kudnda, “A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm,” Struct. Optim. 10, 94–99 (1995). [CrossRef]
  20. A. Osyczka, S. Kundu, “A modified distance method for multicriteria optimization using genetic algorithms,” Computers Ind. Eng. 30, 871–882 (1996). [CrossRef]
  21. S. Kundu, A. Osyczka, “The effect of genetic algorithm selection mechanisms on multicriteria optimization using distance method,” presented at the Fifth International Conference on Intelligent Systems, Reno, Nevada, 1996.
  22. K. Siegbahn, N. Kholine, G. Golikov, “A high resolution and large transmission electron spectrometer,” Nucl. Instrum. Methods A 384, 563–574 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited