OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 13 — May. 1, 1999
  • pp: 2886–2894

Surface roughness from highlight structure

Rong Lu, Jan J. Koenderink, and Astrid M. L. Kappers  »View Author Affiliations

Applied Optics, Vol. 38, Issue 13, pp. 2886-2894 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (474 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Highlights are due to specular reflection and cause the lustrous or mirrorlike appearance of many material surfaces. We investigated in detail the structure of highlight patterns that are due to material surface roughness. We interpret results in terms of a simple model of a random Gaussian surface. The model’s prediction corresponds with the microscopic measurement within a factor of 2. The method allows one to rank generally the roughness of the surfaces of the fruit samples by purely optical means. This simple procedure for estimating surface roughness from images has implications for visual perception and graphic rendering.

© 1999 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(120.5700) Instrumentation, measurement, and metrology : Reflection
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure
(240.5770) Optics at surfaces : Roughness
(240.6700) Optics at surfaces : Surfaces
(330.4060) Vision, color, and visual optics : Vision modeling

Original Manuscript: August 4, 1998
Revised Manuscript: January 4, 1999
Published: May 1, 1999

Rong Lu, Jan J. Koenderink, and Astrid M. L. Kappers, "Surface roughness from highlight structure," Appl. Opt. 38, 2886-2894 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. M. Evans, Eye, Film, and Camera in Color Photography (Wiley, New York, 1959), Chaps. 2–4.
  2. R. L. Cook, K. E. Torrance, “A reflectance model for computer graphics,” Comput. Graph. 15, 307–316 (1981). [CrossRef]
  3. S. A. Shafer, “Using color to separate reflection components,” Color Res. Appl. 10, 210–218 (1985). [CrossRef]
  4. R. S. Hunter, The Measurement of Appearance (Wiley, New York, 1975), Chaps. 1–6.
  5. W. Wendlandt, H. G. Hecht, Reflectance Spectroscopy (Wiley, New York, 1966), Chaps. 1–3.
  6. G. Healey, T. O. Binford, “The role and use of color in a general vision system,” in DARPA Image Understanding (IUS) Workshop, L. S. Bauman, ed., (Morgan Kaufmann, Los Altos, Calif., 1987), pp. 599–613.
  7. G. J. Klinker, S. A. Shafer, T. Kanade, “Measurement of gloss from color images,” in Intersociety Color Council (ISCC) 87 Conference on Appearance (ISCC, Virginia, 1987), pp. 9–13.
  8. G. J. Klinker, S. A. Shafer, T. Kanabe, “Using a color reflection model to separate highlights from object color,” in Proceedings of the First International Conference on Computer Vision (ICCV), J. M. Brady, A. Rosenfeld, eds. (Computer Society Press, London, 1987), pp. 145–150.
  9. E. V. Bohn, Introduction to Electromagnetic Fields and Waves (Addison-Wesley, Reading, Mass., 1967), Chaps. 2–5.
  10. L. B. Wolff, “Diffuse-reflectance model for smooth dielectric surfaces,” J. Opt. Soc. Am. A 11, 2956–2968 (1994). [CrossRef]
  11. T. Horiuchi, Y. Tomita, R. Kammel, “Surface roughness measurement with speckle intensity distribution detected using a linear image sensor,” Jpn. J. Appl. Phys. 21, L743–L745 (1982). [CrossRef]
  12. J. C. Stover, S. A. Serati, “Calculation of surface statistics from light scatter,” Opt. Eng. 23, 406–412 (1984). [CrossRef]
  13. J. Ohtsubo, “Measurement of roughness properties of diamond-turned metal surfaces using light-scattering method,” J. Opt. Soc. Am. A 3, 982–987 (1986). [CrossRef]
  14. J. Q. Whitley, R. P. Kusy, M. J. Mayhew, J. E. Buckthat, “Surface roughness of stainless steel and electroformed nickel standards using a He–Ne laser,” Opt. Laser Technol. 19, 189–196 (1987). [CrossRef]
  15. M. Mitsui, O. Kizuka, “Development of a high-resolution sensor for surface roughness,” Opt. Eng. 27, 498–502 (1988). [CrossRef]
  16. J. Ingers, L. Thibaudeau, “Theory and experiment as tools for assessing surface finish in the UV-visible wavelength region,” in Optical Fabrication and Testing, D. R. Campbell, C. W. Johnson, M. Lorenzen, eds., Proc. SPIE1400, 178–185 (1990). [CrossRef]
  17. K. E. Peiponen, T. Tsuboi, “Metal surface roughness and optical reflectance,” Opt. Laser Technol. 22, 127–130 (1990). [CrossRef]
  18. E. Marx, T. V. Vorburger, “Direct and inverse problems for light scattering by rough surfaces,” Appl. Opt. 29, 3613–3625 (1990). [CrossRef] [PubMed]
  19. F. Silvennoinen, K. E. Peiponen, T. Asakura, Y. Zhang, C. Gu, K. Ikonen, E. J. Morley, “Speckle reflectance of cold-rolled aluminum,” Opt. Lasers Eng. 17, 103–109 (1992). [CrossRef]
  20. M. Kurita, M. Sato, K. Nakano, “A technique for rapidly measuring surface roughness using a laser,” Int. J. Jpn. Soc. Mech. Eng. 35, 335–339 (1992).
  21. P. Beckmann, “Scattering of light by rough surfaces,” Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1967), Vol. 6, pp. 55–69.
  22. P. Beckmann, A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Artech House, Norwood, Mass., 1987), Chap. 5, pp. 70–98.
  23. B. J. Pernick, “Surface roughness measurements with an optical Fourier spectrum analyzer,” Appl. Opt. 18, 796–801 (1979). [CrossRef] [PubMed]
  24. T. Miyoshi, K. Saito, “Noncontact measurement of ultraprecision diamond-turned surface roughness,” Bull. Jpn. Soc. Precis. Eng. 23, 182–188 (1989).
  25. C. Gorecki, “Classification of rough surfaces: comparison between two hybrid optical coherent processors,” Opt. Laser Technol. 21, 117–122 (1989). [CrossRef]
  26. C. Gorecki, “Optical classification of machined metal surfaces by Fourier spectrum sampling,” Wear 137, 287–298 (1990). [CrossRef]
  27. C. Gorecki, “Surface classification by an optoelectronic implementation of the Karhunen–Loève expansion,” Appl. Opt. 30, 4548–4552 (1991). [CrossRef] [PubMed]
  28. V. M. Huynh, S. Kurada, W. North, “Texture analysis of rough surfaces using optical Fourier transform,” Meas. Sci. Technol. 2, 831–837 (1991). [CrossRef]
  29. H. Fujii, T. Asakura, Y. Shindo, “Measurement of surface roughness properties by means of laser speckle techniques,” Opt. Commun. 16, 68–72 (1976). [CrossRef]
  30. H. Fujii, T. Asakura, Y. Shindo, “Measurement of surface roughness properties by using image speckle contrast,” J. Opt. Soc. Am. 66, 1217–1221 (1976). [CrossRef]
  31. H. Fujii, T. Asakura, “Roughness measurement of metal surfaces using laser speckle,” J. Opt. Soc. Am. 67, 1171–1176 (1977). [CrossRef]
  32. D. Léger, E. Mathieu, J. C. Perrin, “Optical surface roughness determination using speckle correlation technique,” Appl. Opt. 14, 872–877 (1975). [CrossRef] [PubMed]
  33. L. X. Cao, T. V. Vorburger, A. G. Lieberman, T. R. Lettieri, “Light-scattering measurement of the rms slopes of rough surfaces,” Appl. Opt. 30, 3221–3227 (1991). [CrossRef] [PubMed]
  34. R. Brodmann, M. Allgauer, “Comparison of light scattering from rough surfaces with optical and mechanical profilometry,” in Surface Measurement and Characterization, J. M. Bennett, ed., Proc. SPIE1009, 111–118 (1988). [CrossRef]
  35. J. H. Rakels, “Recognized surface finish parameters obtained from diffraction patterns of rough surfaces,” in Surface Measurement and Characterization, J. M. Bennett, ed., Proc. SPIE1009, 119–125 (1988).
  36. K. E. Torrance, E. M. Sparrow, “Theory for off-specular reflection from roughened surfaces,” J. Opt. Soc. of Am. 57, 1105–1114 (1967). [CrossRef]
  37. S. K. Nayar, K. Ikeuchi, T. Kanade, “Surface reflection: physical and geometrical perspectives,” IEEE Trans. Pattern Anal. Mach. Intell. 13, 611–634 (1991). [CrossRef]
  38. M. S. Longuet-Higgins, “The statistical analysis of a random, moving surface,” Philos. Trans. R. Soc. London Ser. A 249, 321–387 (1956). [CrossRef]
  39. M. V. Berry, J. H. Hannay, “Umbilic points on Gaussian random surfaces,” J. Phys. A. Math. Gen. 10, No. 11, 1809–1821 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited